日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AB、CD是半徑為1的⊙P兩條直徑,且∠CPB=120°,⊙M與PC、PB及弧CQB都相切,O、精英家教網(wǎng)Q分別為PB、弧CQB上的切點.
          (1)試求⊙M的半徑r;
          (2)以AB為x軸,OM為y軸(分別以OB、OM為正方向)建立直角坐標系,
          ①設直線y=kx+m過點M、Q,求k,m;?????????????????
          ②設函數(shù)y=x2+bx+c的圖象經(jīng)過點Q、O,求此函數(shù)解析式;
          ③當y=x2+bx+c<0時,求x的取值范圍;
          ④若直線y=kx+m與拋物線y=x2+bx+c的另一個交點為E,求線段EQ的長度.
          分析:(1)利用在Rt△POM中
          r
          PM
          =sin60°=
          3
          2
          與PQ=PM+MQ建立起⊙P半徑與⊙M半徑r間的關系,從而求得r的值.
          (2)①首先根據(jù)半徑r與∠QPB=60°確定出M、Q兩點的坐標,再代入y=kx+m,解方程求得k、m的值.
          ②首先根據(jù)y=x2+bx+c的圖象經(jīng)過點O,確定出c=0,再將Q點的坐標代入y=x2+bx+c,求得b的值,此函數(shù)解析式確定.
          ③將拋物線y=x2+bx+c首先轉化為一元二次方程x2+bx+c=0的值x1、x2(其中x1≤x2)的值,那么y=x2+bx+c<0關于x的取值范圍即為x1<x<x2
          ④通過上面①②知兩解析式分別是y=
          3
          x+2
          3
          -3
          、y=x2+
          7
          2
          x
          首先求得E點坐標,Q點的坐標通過圖不難確定,那么再求的兩點間的距離即可.
          解答:精英家教網(wǎng)解:(1)由
          r
          PM
          =sin60°=
          3
          2
          ,PM+MQ=
          2r
          3
          +r=1,
          得r=2
          3
          -3.(2分)

          (2)①點M(0,r),即M(0,2
          3
          -3)
          ;
          Q(rcos60°,
          3
          2
          )
          ,即Q(
          3
          -
          3
          2
          ,
          3
          2
          )

          由已知直線過點M、Q,得m=2
          3
          -3
          k(
          3
          -
          3
          2
          )+m=
          3
          2
          ,
          解得k=
          3
          m=2
          3
          -3
          . (5分)
          ②由y=x2+bx+c過點O、Q,則c=0,
          (
          2
          3
          -3
          2
          )2+b(
          2
          3
          -3
          2
          )=
          3
          2
          ,得b=
          7
          2
          ,
          即得y=x2+
          7
          2
          x
          .(8分)
          ③令x2+
          7
          2
          x=0
          ,則x1=-
          7
          2
          ,x2=0,
          即得當-
          7
          2
          <x<0
          時,y<0.
          ④由已知得y=
          3
          x+2
          3
          -3
          y=x2+
          7
          2
          x
          ,
          消去y,得x2+(
          7
          2
          -
          3
          )x+3-2
          3
          =0
          . (12分)
          設點E的橫坐標為x2,點Q的橫坐標為x1=
          3
          -
          3
          2
          ,
          由根與系數(shù)的關系得x2=-2,
          |x1-x2|=|
          3
          -
          3
          2
          +2|=
          3
          +
          1
          2
          (14分)
          進而得線段EQ的長為2
          3
          +1
          . (15分)
          點評:本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點的求法等知識點.主要考查學生數(shù)形結合的數(shù)學思想方法.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,AB是半⊙O的直徑,弦AC與AB成30°的角,AC=CD.
          (1)求證:CD是半⊙O的切線;
          (2)若OA=2,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖:在直角坐標系中,已知B(b,0),C(0,c),且|b+3|+(2c-8)2=0.
          (1)求B、C的坐標;
          (2)點A、D是第二象限內(nèi)的點,點M、N分別是x軸和y軸負半軸上的點,∠ABM=∠CBO,CD∥AB,MC、NB所在直線分別交AB、CD于E、F,若∠MEA=70°,∠CFB=30°.求∠CMB-∠CNB的值;
          (3)如圖:AB∥CD,Q是CD上一動點,CP平分∠DCB,BQ與CP交于點P,給出下列兩個結論:①
          ∠DQB+QBC
          ∠QPC
          的值不變;②
          ∠DQB+∠QBC
          ∠QPC
          的值改變.其中有且只有一個是正確的,請你找出這個正確的結論并求其定值.
          精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,AB是半⊙O的直徑,C、D是半圓的三等分點,半圓的半徑為R.
          (1)CD與AB平行嗎?為什么?
          (2)求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•武漢模擬)如圖,AB為⊙O的直徑,AM和BN是它的兩條切線,E為⊙O的半圓弧上一動點(不與A、B重合),過點E的直線分別交射線AM、BN于D、C兩點,且CB=CE.
          (1)求證:CD為⊙O的切線;
          (2)若tan∠BAC=
          2
          2
          ,求 
          AH
          CH
          的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•麗水)如圖1,點A是x軸正半軸上的動點,點B坐標為(0,4),M是線段AB的中點,將點M繞點A順時針方向旋轉90°得到點C,過點C作x軸的垂線,垂足為F,過點B作y軸的垂線與直線CF相交于點E,點D是點A關于直線CF的對稱點,連結AC,BC,CD,設點A的橫坐標為t.
          (1)當t=2時,求CF的長;
          (2)①當t為何值時,點C落在線段BD上;
               ②設△BCE的面積為S,求S與t之間的函數(shù)關系式;
          (3)如圖2,當點C與點E重合時,將△CDF沿x軸左右平移得到△C′D′F′,再將A,B,C′,D′為頂點的四邊形沿C′F′剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合上述條件的點C′的坐標.

          查看答案和解析>>

          同步練習冊答案