日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
          探究:設(shè)A、P兩點(diǎn)間的距離為x.
          (1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
          (2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
          (3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).
          精英家教網(wǎng)
          分析:(1)過點(diǎn)P作MN∥BC,分別交AB于點(diǎn)M,交CD于點(diǎn)N,可得四邊形AMND和四邊形BCNM都是矩形,△AMP和△CNP都是等腰三角形;根據(jù)等腰三角形的性質(zhì)與角的互余關(guān)系進(jìn)行代換可得△QNP≌△PMB,故PQ=PB.
          (2)設(shè)AP=x,故AM=MP=NQ=DN=
          2
          2
          x,由(1)的結(jié)論,可得CQ=CD-DQ=1-2×
          2
          2
          x=1-
          2
          x;
          根據(jù)圖形可得關(guān)系S四邊形PBCQ=S△PBC+S△PCQ,代入數(shù)據(jù)可得解析式.
          (3)分①當(dāng)點(diǎn)P與點(diǎn)A重合,與②當(dāng)點(diǎn)Q在邊DC的延長線上,兩種情況討論,分別討論答案.
          解答:解:(1)PQ=PB,
          證明:過點(diǎn)P作MN∥BC,分別交AB于點(diǎn)M,交CD于點(diǎn)N,則四邊形AMND和四邊形BCNM都是矩形,
          △AMP和△CNP都是等腰三角形(如圖1).
          ∴NP=NC=MB
          ∵∠BPQ=90°
          ∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°
          ∴∠QPN=∠PBM.
          又∵∠QNP=∠PMB=90°
          ∴△QNP≌△PMB(ASA),
          ∴PQ=PB.

          (2)由(1)知△QNP≌△PMB,得NQ=MP.
          ∵AP=x,
          ∴AM=MP=NQ=DN=
          2
          2
          x,BM=PN=CN=1-
          2
          2
          x,
          ∴CQ=CD-DQ=1-2×
          2
          2
          x=1-
          2
          x
          ∴S△PBC=
          1
          2
          BC•BM=
          1
          2
          ×1×(1-
          2
          2
          x)=
          1
          2
          -
          2
          4
          x,
          S△PCQ=
          1
          2
          CQ•PN=
          1
          2
          ×(1-
          2
          x)(1-
          2
          2
          x)=
          1
          2
          -
          3
          2
          4
          x+
          1
          2
          x2,
          ∴S四邊形PBCQ=S△PBC+S△PCQ=
          1
          2
          x2-
          2
          x+1,
          即y=
          1
          2
          x2-
          2
          x+1(0≤x
          2
          2
          ).

          (3)△PCQ可能成為等腰三角形.
          ①當(dāng)點(diǎn)P與點(diǎn)A重合,點(diǎn)Q與點(diǎn)D重合,這時(shí)PQ=QC,△PCQ是等腰三角形,此時(shí)x=0;精英家教網(wǎng)
          ②當(dāng)點(diǎn)Q在邊DC的延長線上,且CP=CQ時(shí),△PCQ是等腰三角形(如圖3),
          此時(shí),QN=PM=
          2
          2
          x,CP=
          2
          -x,CN=
          2
          2
          CP=1-
          2
          2
          x,
          ∴CQ=QN-CN=
          2
          2
          x-(1-
          2
          2
          x)=
          2
          x-1,
          當(dāng)
          2
          -x=
          2
          x-1時(shí),得x=1.
          ③BP⊥AC,Q點(diǎn)與C點(diǎn)重合,PQ=CP,△PCQ不存在.
          綜上所述,x=0或1時(shí),△PCQ為等腰三角形.
          點(diǎn)評(píng):解答本題要充分利用正方形的特殊性質(zhì).注意在正方形中的特殊三角形的應(yīng)用,搞清楚矩形、菱形、正方形中的三角形的三邊關(guān)系,可有助于提高解題速度和準(zhǔn)確率.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng)(點(diǎn)P與點(diǎn)A不重合),直角的一邊始終經(jīng)過點(diǎn)B,直角的另一邊與射線DC相交于點(diǎn)Q.
          探究:設(shè)A、P兩點(diǎn)的距離為x,問當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ能否成為等腰三角形:
           
          (用“能”或“不能”填空).若能,直接寫出使△PCQ成為等腰三角形時(shí)相應(yīng)的x的值;若不能,請(qǐng)簡要說明理由:
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線上滑動(dòng),直角的一邊始終經(jīng)過B點(diǎn),另一邊與射線DC相交于點(diǎn)Q.設(shè)AP=x.
          (1)當(dāng)Q點(diǎn)在CD上時(shí),線段PQ與線段PB的大小關(guān)系怎樣?并證明你的結(jié)論;
          (2)當(dāng)Q在CD上時(shí),設(shè)四邊形PBCQ面積為y,求y與x之間的函數(shù)關(guān)系,并寫出x的取值范圍;
          (3)當(dāng)點(diǎn)P在線段AC上滑動(dòng),且Q在DC延長線上時(shí),△PCQ能否為等腰三角形?若能,求出x的值;若不能,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

          (2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
          探究:設(shè)A、P兩點(diǎn)間的距離為x.
          (1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
          (2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
          (3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年中考數(shù)學(xué)全真模擬試卷(9)(解析版) 題型:解答題

          (2002•上海)操作:將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q.
          探究:設(shè)A、P兩點(diǎn)間的距離為x.
          (1)點(diǎn)Q在CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察得到的結(jié)論(如圖1);
          (2)點(diǎn)Q邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)的定義域(如圖2);
          (3)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否可能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)的x的值;如果不可能,試說明理由(如圖3).(圖4、圖5、圖6的形狀、大小相同,圖4供操作、實(shí)驗(yàn)用,圖5和圖6備用).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案