日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:m、n是方程x2-6x+5=0的兩個實數(shù)根,且mn,拋物線y=-x2+bx+c的圖像經(jīng)過點A(m,0)、B(0,n).

          (1)求這個拋物線的解析式;

          (2)設(shè)(1)中拋物線與軸的另一交點為C,拋物線的頂點為D,試求出點C、D的坐標(biāo)和△BCD的面積

          (3)P是線段OC上的一點,過點PPHx軸,與拋物線交于H點,若直線BC把△PCH分成面積之比為2∶3的兩部分,請求出P點的坐標(biāo).

          (1)解方程x2-6x+5=0得x1=5,x2=1,由mn,有m=1,n=5,所以點A、B的坐標(biāo)分別為A(1,0),B(0,5).將A(1,0),B(0,5)的坐標(biāo)分別代入y=-x2+bx+c.得解這個方程組,得所以,拋物線的解析式為y=-x2-4x+5.

          (2)由y=-x2-4x+5,令y=0,得-x2-4x+5=0.解這個方程,得x1=-5,x2=1,所以C點的坐標(biāo)為(-5,0).由頂點坐標(biāo)公式計算,得點D(-2,9).過Dx軸的垂線交x軸于M.則SDMC×9×(5-2)=,S梯形MDBO×2×(9+5)=14,SBOC×5×5=,所以SBCDS梯形MDBO+ SDMCSBOC=14+=15.

          (3)設(shè)P點的坐標(biāo)為(a,0)因為線段BCBC兩點,所以BC所在的直線方程為yx+5.那么,PH與直線BC的交點坐標(biāo)為E(a,a+5),PH與拋物線y=-x2-4x+5的交點坐標(biāo)為H(a,-a2-4a+5).由題意,得①EHEP,即(-a2-4a+5)-(a+5)=(a+5). 解這個方程,得a=-a=-5(舍去);②EHEP,即(-a2-4a+5)-(a+5)=(a+5). 解這個方程,得a=-a=-5(舍去);即P點的坐標(biāo)為 (-,0)或 (-,0).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          定義A=a+b
          m
          、B=a-b
          m
          (a,b,m均為有理數(shù))都是無理數(shù),滿足:①A+B=2a為有理數(shù),②AB=a2-mb2為有理數(shù).稱A、B兩數(shù)為一對共軛數(shù).(如:3+2
          2
          ,3-2
          2
          ,∵3+2
          2
          +3-2
          2
          =6,(3+2
          2
          )(3-2
          2
          )
          =32-(2
          2
          )2=9-8=1
          ,∴3+2
          2
          ,3-2
          2
          是一對共軛數(shù)).
          (1)已知,x1,x2是方程x2-4x=2的兩個根,求x1、x2的值,并判別x1、x2是否是一對共軛數(shù)?
          (2)在(1)的條件下,試判別x12、x22是否是一對共軛數(shù)?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          2、已知兩圓的半徑是方程(x-2)(x-3)=0的兩實數(shù)根,圓心距為4,那么這兩個圓的位置關(guān)系是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          韋達(dá)定理:若x1,x2為方程ax2+bx+c=0的兩根,則x1+x2=-
          b
          a
          ,x1x2=
          c
          a
          ,已知:m和n是方程2x2-5x-3=0的兩根,利用以上材料,不解方程,求:
          (1)
          1
          m
          +
          1
          n

          (2)m2+n2的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知兩圓半徑長是方程x2-9x+14=0的兩個根,若圓心距是9,試說明兩圓的位置關(guān)系是什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          若一元二次方程ax2+bx+c=0(a≠0)的兩個實根為x1、x2,則兩根與方程系數(shù)之間有如下關(guān)系:x1+x2=-
          b
          a
          ,x1x2=
          c
          a
          .這一結(jié)論稱為一元二次方程根與系數(shù)關(guān)系,它的應(yīng)用很多,請完成下列各題:
          (1)應(yīng)用一:用來檢驗解方程是否正確.
          檢驗:先求x1+x2=
          -
          b
          a
          -
          b
          a
          ,x1x2=
          c
          a
          c
          a

          再將你解出的兩根相加、相乘,即可判斷解得的根是否正確.(本小題完成填空即可)
          (2)應(yīng)用二:用來求一些代數(shù)式的值.
          ①已知:x1、x2是方程x2-4x+2的兩個實數(shù)根,求(x1-1)(x2-1)的值;
          ②若a、b是方程x2+2x-2013=0的兩個實數(shù)根,求代數(shù)式a2+3a+b的值.

          查看答案和解析>>

          同步練習(xí)冊答案