日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•無錫)如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運(yùn)動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運(yùn)動(P、Q兩點中,有一個點運(yùn)動到終點時,所有運(yùn)動即終止).設(shè)P、Q同時出發(fā)并運(yùn)動了t秒.
          (1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
          (2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存在,求出這樣的t的值;若不存在,請說明理由.

          【答案】分析:(1)可通過構(gòu)建直角三角形來求解.過D作DE⊥AB于E,過C作CF⊥AB于F,很顯然AE=BF,四邊形DQPE和QCFP是矩形,那么就能用等腰梯形的上下底的差求出AE,BF的長,然后可用時間表示出CQ,DQ,AP的長,由于DQ=EP,因此可用AP=AE+EP求出時間的值.
          (2)先要求出梯形的面積,那么求出高就是關(guān)鍵,在直角三角形AED中,可用勾股定理求出高,也就求出了四邊形QPBC的面積,由于Q在CD和DA上運(yùn)動,因此要分Q在CD上,和Q在AD上兩種情況進(jìn)行討論.
          當(dāng)Q在CD上時,可用時間t表示出CQ和BP的長,然后根據(jù)計算出的高和四邊形CQPB的面積,來求出時間t的值,要注意當(dāng)Q在CD上時,t應(yīng)該在0-2秒內(nèi),可用這個取值范圍來判定求出的值是否符合題意.
          當(dāng)Q在AD上時,四邊形QPBC是個不規(guī)則的四邊形,那么根據(jù)他的面積是梯形的一半,那么四邊形QPBC的面積就應(yīng)該等于三角形CDQ和AQP的面積和,那么就需要作出這兩個三角形的高以便求出面積,過點Q作HG⊥AB于G,交CD的延長線于H.求出QH和QG就是解題的關(guān)鍵.
          可以用時間t先表示出CQ,AP,然后根據(jù)CD+DQ=CQ進(jìn)而表示出QD和AQ,那么我們可在直角三角形AQG中根據(jù)∠A的度數(shù)求出QG,然后根據(jù)求出的梯形的高得出QH的值,這樣就能用含t的式子表示出三角形QDC和AQP的面積,也就是四邊形QPBC的面積,根據(jù)求出的四邊形的面積可得出t的值,要注意Q在AD上時,取值范圍是2-4秒,因此可根據(jù)這個取值范圍判定求出的t是否符合題意.
          解答:解:(1)過D作DE⊥AB于E,過C作CF⊥AB于F,如圖1.
          ∵四邊形ABCD是等腰梯形,
          ∴四邊形CDEF是矩形,
          ∴DE=CF.
          又∵AD=BC,
          ∴Rt△ADE≌Rt△BCF,AE=BF.
          又CD=2cm,AB=8cm,
          ∴EF=CD=2cm,
          AE=BF=(8-2)=3(cm).
          若四邊形APQD是直角梯形,則四邊形DEPQ為矩形.
          ∵CQ=t,
          ∴DQ=EP=2-t,
          ∵AP=AE+EP,
          ∴2t=3+2-t,
          ∴t=

          (2)在Rt△ADE中,DE=(cm),
          S梯形ABCD=(8+2)×3=15(cm2).
          當(dāng)S四邊形PBCQ=S梯形ABCD時,
          ①如圖2,若點Q在CD上,即0≤t<2,
          則CQ=t,BP=8-2t.
          S四邊形PBCQ=(t+8-2t)×3=,
          解之得t=3(舍去).
          ②如圖3,若點Q在AD上,即2≤t<4.
          過點Q作HG⊥AB于G,交CD的延長線于H.
          由圖1知,sin∠ADE=AE:AD=,
          ∴∠ADE=30°,
          則∠A=60度.在Rt△AQG中,AQ=8-t,QG=AQ•sin60°=
          在Rt△QDH中,∠QDH=60°,DQ=t-2,QH=DQ•sin60°=
          由題意知,S四邊形PBCQ=S△APQ+S△CDQ=×2t×+×2×,
          即t2-9t+17=0,解之得(不合題意,舍去),
          答:存在,使四邊形PBCQ的面積是梯形ABCD面積的一半.
          點評:本題要根據(jù)Q點的位置來判斷四邊形CQPB的形狀,進(jìn)而選擇合適的解題方法.本題中通過輔助線作出梯形的高,構(gòu)建出直角三角形是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2006•無錫)如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運(yùn)動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運(yùn)動(P、Q兩點中,有一個點運(yùn)動到終點時,所有運(yùn)動即終止).設(shè)P、Q同時出發(fā)并運(yùn)動了t秒.
          (1)當(dāng)PQ將梯形ABCD分成兩個直角梯形時,求t的值;
          (2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存在,求出這樣的t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2006•無錫)如圖,△ABC中,∠ACB=90°,AC=BC=1,將△ABC繞點C逆時針旋轉(zhuǎn)角α.(0°<α<90°)得到△A1B1C1,連接BB1.設(shè)CB1交AB于D,AlB1分別交AB、AC于E、F.
          (1)在圖中不再添加其它任何線段的情況下,請你找出一對全等的三角形,并加以證明(△ABC與△A1B1C1全等除外);
          (2)當(dāng)△BB1D是等腰三角形時,求α;
          (3)當(dāng)α=60°時,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2006•無錫)如圖,點A、B、C、D在⊙O上,若∠C=60°,則∠D=    度,∠O=    度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市中考數(shù)學(xué)試卷(解析版) 題型:填空題

          (2006•無錫)如圖所示,圖中的∠1=    度.

          查看答案和解析>>

          同步練習(xí)冊答案