【題目】已知函數(shù).
(1)求曲線在點(diǎn)
處的切線方程;
(2)求證:存在唯一的,使得曲線
在點(diǎn)
處的切線的斜率為
;
(3)比較與
的大小,并加以證明.
【答案】(1);(2)證明見解析;(3)
.
【解析】試題分析:(1)求出的值可得切點(diǎn)坐標(biāo),求出
,可得
的值,從而得切線斜率,利用點(diǎn)斜式可得曲線
在點(diǎn)
處的切線方程;(2)由已知
,只需證明方程
在區(qū)間
有唯一解,先利用導(dǎo)數(shù)證明
在區(qū)間
單調(diào)遞增,再利用零點(diǎn)存在定理可得結(jié)論;(3)當(dāng)
時(shí),利用導(dǎo)數(shù)研究函數(shù)
的單調(diào)性,可得
,即
,令
即可的結(jié)果.
試題解析:(1)函數(shù)的定義域是
,
導(dǎo)函數(shù)為. 所以
, 又
,
所以曲線在點(diǎn)
處的切線方程為
,
(2)由已知.
所以只需證明方程 在區(qū)間
有唯一解.
即方程 在區(qū)間
有唯一解.
設(shè)函數(shù) ,則
.
當(dāng) 時(shí),
,故
在區(qū)間
單調(diào)遞增.
又 ,
,
所以 存在唯一的,使得
.
綜上,存在唯一的,使得曲線
在點(diǎn)
處的切線的斜率為
.
(3).證明如下:首先證明:當(dāng)
時(shí),
.
設(shè) ,則
.
當(dāng) 時(shí),
,
所以
,故
在
單調(diào)遞增,
所以 時(shí),有
,即當(dāng)
時(shí),有
.
所以 .
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與零點(diǎn),屬于難題. 求曲線切線方程的一般步驟是:(1)求出在
處的導(dǎo)數(shù),即
在點(diǎn)
出的切線斜率(當(dāng)曲線
在
處的切線與
軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為
);(2)由點(diǎn)斜式求得切線方程
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】下面說法正確的是( )
A.甲比乙多,也就是乙比甲少
B.一個(gè)假分?jǐn)?shù)的倒數(shù)一定比這個(gè)假分?jǐn)?shù)大
C.一個(gè)數(shù)(0除外)除以分?jǐn)?shù)的商一定比原來的數(shù)小
D.圓有無數(shù)條對稱軸
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】下面各數(shù)中的5表示5個(gè)百分之一的是( 。
A.5.01 B.2.51 C.0.050 D.1.005
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】計(jì)算70-(16-9)時(shí),先算(_______),再算(_______),結(jié)果是(_______)。
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】我們身體上有很多“尺子”可以助我們測量。
(1)比如聰聰?shù)闹讣咨w寬約為1厘米,他正在用指甲蓋量圖中鉛筆的長度。請你估計(jì)這支鉛筆的長度大約是________厘米。
(2)下面是與明明身體有關(guān)的一些數(shù)據(jù)。現(xiàn)在明明想要測量繞藍(lán)球場一圈的長度,你覺得選擇下邊哪個(gè)“尺子”最合適?如何測量?(寫出測量過程)
足長大約20厘米 步長大約60厘米 臂展大約150厘米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com