日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)ξ可取1.2.3.4. . , ----8分 故ξ的分布列為ξ1234P -----------------------10分 答:ξ的數學期望為 ------------------------12分 查看更多

           

          題目列表(包括答案和解析)

          為了解高中一年級學生身高情況,某校按10%的比例對全校700名高中一年級學生按性別進行抽樣檢查,測得身高頻數分布表如下表1、表2.

          表1:男生身高頻數分布表

           

          身高(cm)

          [160,165)

          [165,170)

          [170,175)

          [175,180)

          [180,185)

          [185,190)

          頻數

          2

          5

          14

          13

          4

          2

           

          表2:女生身高頻數分布表

           

          身高(cm)

          [150,155)

          [155,160)

          [160,165)

          [165,170)

          [170,175)

          [175,180)

          頻數

          1

          7

          12

          6

          3

          1

           

          (I)求該校男生的人數并完成下面頻率分布直方圖;

          (II)估計該校學生身高在的概率;

          (III)從樣本中身高在180190cm之間的男生中任選2人,求至少有1人身高在185190cm之間的概率。

          【解析】第一問樣本中男生人數為40 ,

          由分層抽樣比例為10%可得全校男生人數為400

          (2)中由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在的頻率 

          故由估計該校學生身高在的概率 

          (3)中樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖,故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185190cm之間的可能結果數為9,因此,所求概率

          由表1、表2知,樣本中身高在的學生人數為:5+14+13+6+3+1=42,樣本容量為70 ,所以樣本中學生身高在

          的頻率-----------------------------------------6分

          故由估計該校學生身高在的概率.--------------------8分

          (3)樣本中身高在180185cm之間的男生有4人,設其編號為①②③④ 樣本中身高在185190cm之間的男生有2人,設其編號為⑤⑥從上述6人中任取2人的樹狀圖為:

          --10分

          故從樣本中身高在180190cm之間的男生中任選2人得所有可能結果數為15,求至少有1人身高在185190cm之間的可能結果數為9,因此,所求概率

           

          查看答案和解析>>

          已知,函數

          (1)當時,求函數在點(1,)的切線方程;

          (2)求函數在[-1,1]的極值;

          (3)若在上至少存在一個實數x0,使>g(xo)成立,求正實數的取值范圍。

          【解析】本試題中導數在研究函數中的運用。(1)中,那么當時,  又    所以函數在點(1,)的切線方程為;(2)中令   有 

          對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

          解:(Ⅰ)∵  ∴

          ∴  當時,  又    

          ∴  函數在點(1,)的切線方程為 --------4分

          (Ⅱ)令   有 

          ①         當

          (-1,0)

          0

          (0,

          ,1)

          +

          0

          0

          +

          極大值

          極小值

          的極大值是,極小值是

          ②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

          綜上所述   時,極大值為,無極小值

          時  極大值是,極小值是        ----------8分

          (Ⅲ)設,

          求導,得

          ,    

          在區(qū)間上為增函數,則

          依題意,只需,即 

          解得  (舍去)

          則正實數的取值范圍是(,

           

          查看答案和解析>>

          若某產品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產品抽樣檢查中,從某廠生產的此種產品中,隨機抽取5000件進行檢測,結果發(fā)現有50件不合格品。計算這50件不合格品的直徑長與標準值的差(單位:mm), 將所得數據分組,得到如下頻率分布表:

          分組

          頻數

          頻率

          [-3, -2)

           

          0.10

          [-2, -1)

          8

           

          (1,2]

           

          0.50

          (2,3]

          10

           

          (3,4]

           

           

          合計

          50

          1.00

          (Ⅰ)將上面表格中缺少的數據填在答題卡的相應位置;

          (Ⅱ)估計該廠生產的此種產品中,不合格品的直徑長與標準值的差落在區(qū)間(1,3]內的概率;

          (Ⅲ)現對該廠這種產品的某個批次進行檢查,結果發(fā)現有20件不合格品。據此估算這批產品中的合格品的件數。

          【解析】(Ⅰ)

          分組

          頻數

          頻率

          [-3, -2)

           5

          0.10

          [-2, -1)

          8

          0.16 

          (1,2]

           25

          0.50

          (2,3]

          10

          0.2

          (3,4]

           2

          0.04

          合計

          50

          1.00

          (Ⅱ)根據頻率分布表可知,落在區(qū)間(1,3]內頻數為35,故所求概率為0.7.

          (Ⅲ)由題可知不合格的概率為0.01,故可求得這批產品總共有2000,故合格的產品有1980件。

           

          查看答案和解析>>

          已知函數

          (Ⅰ)求函數的單調區(qū)間;

          (Ⅱ)設,若對任意,,不等式 恒成立,求實數的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

          第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

          (II)若對任意不等式恒成立,

          問題等價于,                   .........5分

          由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

          故也是最小值點,所以;            ............6分

          當b<1時,;

          時,;

          當b>2時,;             ............8分

          問題等價于 ........11分

          解得b<1 或 或    即,所以實數b的取值范圍是 

           

          查看答案和解析>>

          設點是拋物線的焦點,是拋物線上的個不同的點().

          (1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

          ;

          (2)當時,若,

          求證:;

          (3) 當時,某同學對(2)的逆命題,即:

          “若,則.”

          開展了研究并發(fā)現其為假命題.

          請你就此從以下三個研究方向中任選一個開展研究:

          ① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

          ② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

          ③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

          【解析】第一問利用拋物線的焦點為,設

          分別過作拋物線的準線的垂線,垂足分別為.

          由拋物線定義得到

          第二問設,分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

          第三問中①取時,拋物線的焦點為,

          ,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;

          解:(1)拋物線的焦點為,設,

          分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

           

          因為,所以

          故可取滿足條件.

          (2)設,分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

             又因為

          ;

          所以.

          (3) ①取時,拋物線的焦點為,

          ,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;,

          .

          ,,,是一個當時,該逆命題的一個反例.(反例不唯一)

          ② 設,分別過

          拋物線的準線的垂線,垂足分別為

          及拋物線的定義得

          ,即.

          因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

          ,

          ,所以.

          (說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

          ③ 補充條件1:“點的縱坐標)滿足 ”,即:

          “當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

          分別過作拋物線準線的垂線,垂足分別為,由

          及拋物線的定義得,即,則

          ,

          又由,所以,故命題為真.

          補充條件2:“點與點為偶數,關于軸對稱”,即:

          “當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

           

          查看答案和解析>>


          同步練習冊答案