日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由余弦定理.得 .則.即.所以B的大小是或. 查看更多

           

          題目列表(包括答案和解析)

          如圖,在正四棱錐中,

          (1)求該正四棱錐的體積;

          (2)設(shè)為側(cè)棱的中點(diǎn),求異面直線

          所成角的大小.

          【解析】第一問(wèn)利用設(shè)為底面正方形中心,則為該正四棱錐的高由已知,可求得,

          所以,

          第二問(wèn)設(shè)中點(diǎn),連結(jié)、,

          可求得,,

          中,由余弦定理,得

          所以,

           

          查看答案和解析>>

          給出問(wèn)題:已知滿足,試判定的形狀.某學(xué)生的解答如下:

          解:(i)由余弦定理可得,

          ,

          ,

          是直角三角形.

          (ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價(jià)于

          是等腰三角形.

          綜上可知,是等腰直角三角形.

          請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線中寫出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線中寫出你認(rèn)為本題正確的結(jié)果.           .

           

          查看答案和解析>>

          已知函數(shù).]

          (1)求函數(shù)的最小值和最小正周期;

          (2)設(shè)的內(nèi)角、的對(duì)邊分別為,,,且,,

          ,求的值.

          【解析】第一問(wèn)利用

          得打周期和最值

          第二問(wèn)

           

          ,由正弦定理,得,①  

          由余弦定理,得,即,②

          由①②解得

           

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長(zhǎng).

           

          【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過(guò)點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          已知中,內(nèi)角的對(duì)邊的邊長(zhǎng)分別為,且

          (I)求角的大小;

          (II)若的最小值.

          【解析】第一問(wèn),由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,

          第二問(wèn),

          三角函數(shù)的性質(zhì)運(yùn)用。

          解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB, 

          (Ⅱ)由(Ⅰ)可知 

          ,,則當(dāng) ,即時(shí),y的最小值為

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案