日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求函數(shù)的“拐點 A的坐標; 查看更多

           

          題目列表(包括答案和解析)

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
          (Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
          (Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
          (Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較
          G(x1)+G(x2)
          2
          G(
          x1+x2
          2
          )
          的大。

          查看答案和解析>>

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
          (Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
          (Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
          (Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較的大。

          查看答案和解析>>

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x,則稱點(x,f(x))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
          (Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
          (Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
          (Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較的大小.

          查看答案和解析>>

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
          (Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
          (Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
          (Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較數(shù)學公式數(shù)學公式的大。

          查看答案和解析>>

          對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
          (Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
          (Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
          (Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較
          G(x1)+G(x2)
          2
          G(
          x1+x2
          2
          )
          的大。

          查看答案和解析>>


          同步練習冊答案