日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:將原方程化為:. ∴ 令.它表示傾角為45°的直線系. 令.它表示焦點在x軸上.頂點為的等軸雙曲線在x軸上方的部分. ∵原方程有解. ∴兩個函數(shù)的圖象有交點.由下圖.知 ∴ ∴k的取值范圍為 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
          A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
          B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
          (1)求矩陣M的特征值及相應(yīng)的特征向量;
          (2)求逆矩陣M-1以及橢圓
          x2
          4
          +
          y2
          9
          =1
          在M-1的作用下的新曲線的方程.
          C、已知某圓的極坐標(biāo)方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0

          (Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
          (Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

          查看答案和解析>>

          在A,B,C,D四小題中只能選做2題,每題10分,共計20分.
          A、如圖,AB為⊙O的直徑,BC切⊙O于B,AC交⊙O于P,CE=BE,E在BC上.求證:PE是⊙O的切線.
          B、設(shè)M是把坐標(biāo)平面上的點的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸壓變換.
          (1)求矩陣M的特征值及相應(yīng)的特征向量;
          (2)求逆矩陣M-1以及橢圓在M-1的作用下的新曲線的方程.
          C、已知某圓的極坐標(biāo)方程為:
          (Ⅰ)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
          (Ⅱ)若點P(x,y)在該圓上,求x+y的最大值和最小值.
          D、若關(guān)于x的不等式|x+2|+|x-1|≥a的解集為R,求實數(shù)a的取值范圍.

          查看答案和解析>>

          ⊙O1和⊙O2的極坐標(biāo)方程分別為

          ⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

          ⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

          【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

          (1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

          (2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

          解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

          (I),,由.所以

          為⊙O1的直角坐標(biāo)方程.

          同理為⊙O2的直角坐標(biāo)方程.

          (II)解法一:由解得

          即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

          解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

           

          查看答案和解析>>

          已知某圓的極坐標(biāo)方程為:ρ2-4
          2
          ρcos(θ-
          π
          4
          )+6=0.
          (1)將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
          (2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

          查看答案和解析>>

          (1)已知某圓的極坐標(biāo)方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標(biāo)方程化為普通方程;并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程.
          (2)已知二階矩陣M有特征值λ=8及對應(yīng)的一個特征向量e1=
          .
          1
          1
          .
          ,且矩陣M對應(yīng)的變換將點(-1,2)變換成
          (-2,4).求矩陣M的另一個特征值及對應(yīng)的一個特征向量e2的坐標(biāo)之間的關(guān)系.

          查看答案和解析>>


          同步練習(xí)冊答案