日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11.一元二次方程(1+3)(一3)=22+1化為一般形式為: .二次項系數(shù)為: .一次項系數(shù)為: .常數(shù)項為: . 查看更多

           

          題目列表(包括答案和解析)

          (1)先化簡,再求值:(x+2-
          5
          x-2
          x-3
          x-2
          ,其中x=
          5
          -3
          ;
          (2)若a=1-
          2
          ,先化簡再求
          a2-1
          a2+a
          +
          a2-2a+1
          a2-a
          的值;
          (3)已知a=
          2
          +1,b=
          2
          -1
          ,求a2-a2005b2006+b2的值;
          (4)已知:實數(shù)a,b在數(shù)軸上的位置如圖所示,
          精英家教網(wǎng)
          化簡:
          (a+1)2
          +2
          (b-1)2
          -|a-b|;
          (5)觀察下列各式及驗證過程:
          N=2時有式①:
          2
          3
          =
          2+
          2
          3

          N=3時有式②:
          3
          8
          =
          3+
          3
          8

          式①驗證:
          2
          3
          =
          23
          3
          =
          (23-2)+2
          22-1
          =
          2(22-1)+2
          22-1
          =
          2+
          2
          3

          式②驗證:
          3
          8
          =
          33
          8
          =
          (33-3)+3
          32-1
          =
          3(32-1)+3
          32-1
          =
          3+
          3
          8

          ①針對上述式①、式②的規(guī)律,請寫出n=4時變化的式子;
          ②請寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗證.
          (6)已知關(guān)于x的一元二次方程x2+(2m-1)+m2=0有兩個實數(shù)根x1和x2.    ①求實數(shù)m的取值范圍;②當x12-x22=0時,求m的值.

          查看答案和解析>>

          (2013•青島)在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗證了平方差公式和完全平方公式.
          這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

          【研究速算】
          提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
          幾何建模:
          用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
          (1)畫長為47,寬為43的矩形,如圖3,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
          (2)分析:原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
          用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構(gòu)成運算結(jié)果.
          歸納提煉:
          兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
          十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構(gòu)成運算結(jié)果
          十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構(gòu)成運算結(jié)果

          【研究方程】
          提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
          幾何建模:
          (1)變形:x(x+2)=35.
          (2)畫四個長為x+2,寬為x的矩形,構(gòu)造圖4
          (3)分析:圖中的大正方形面積可以有兩種不同的表達方式,(x+x+2)2或四個長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
          即(x+x+2)2=4x(x+2)+22
          ∵x(x+2)=35
          ∴(x+x+2)2=4×35+22
          ∴(2x+2)2=144
          ∵x>0
          ∴x=5
          歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
          要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關(guān)線段的長)
          【研究不等關(guān)系】
          提出問題:怎樣運用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
          幾何建模:
          (1)畫長y+3,寬y+2的矩形,按圖5方式分割
          (2)變形:2y+5=(y+3)+(y+2)
          (3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
          歸納提煉:
          當a>2,b>2時,表示ab與a+b的大小關(guān)系.
          根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關(guān)線段的長)

          查看答案和解析>>

          (教材變式題)把關(guān)于x的方程
          (x-1)2
          2
          +3x=
          5
          2
          (x+1)化為一元二次方程的一般式,并指出二次項,一次項的系數(shù)和常數(shù)項.

          查看答案和解析>>

          (教材變式題)把關(guān)于x的方程
          (x-1)2
          2
          +3x=
          5
          2
          (x+1)化為一元二次方程的一般式,并指出二次項,一次項的系數(shù)和常數(shù)項.

          查看答案和解析>>

          閱讀下列解題過程,借鑒其中一種方法解答后面給出的試題:
          問題:某人買13個雞蛋,5個鴨蛋、9個鵝蛋共用去了9.25元;買2個雞蛋,4個鴨蛋、3個鵝蛋共用去了3.20元.試問只買雞蛋、鴨蛋、鵝蛋各一個共需多少元.
          分析:設(shè)買雞蛋,鴨蛋、鵝蛋各一個分別需x、y、z元,則需要求x+y+z的值.由題意,知數(shù)學公式;
          視x為常數(shù),將上述方程組看成是關(guān)于y、z的二元一次方程組,化“三元”為“二元”、化“二元”為“一元”從而獲解.
          解法1:視x為常數(shù),依題意得數(shù)學公式
          解這個關(guān)于y、z的二元一次方程組得數(shù)學公式
          于是x+y+z=x+0.05+x+1-2x=1.05.
          評注:也可以視z為常數(shù),將上述方程組看成是關(guān)于x、y的二元一次方程組,解答方法同上,你不妨試試.
          分析:視x+y+z為整體,由(1)、(2)恒等變形得5(x+y+z)+4(2x+z)=9.25,4(x+y+z)-(2x+z)=3.20.
          解法2:設(shè)x+y+z=a,2x+z=b,代入(1)、(2)可以得到如下關(guān)于a、b的二元一次方
          程組數(shù)學公式
          由⑤+4×⑥,得21a+22.05,a=1.05.
          評注:運用整體的思想方法指導解題.視x+y+z,2x+z為整體,令a=x+y+z,b=2x+z,代入①、②將原方程組轉(zhuǎn)化為關(guān)于a、b的二元一次方程組從而獲解.
          請你運用以上介紹的任意一種方法解答如下數(shù)學競賽試題:
          購買五種教學用具A1、A2、A3、A4、A5的件數(shù)和用錢總數(shù)列成下表:

          那么,購買每種教學用具各一件共需多少元?

          查看答案和解析>>


          同步練習冊答案