日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A.p B.―p C. D. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
          AB
          于點(diǎn)E,連接EC,求∠OEC.
          B.選修4-2:矩陣與變換
          曲線C1=x2+2y2=1在矩陣M=[
          12
          01
          ]的作用下變換為曲線C2,求C2的方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          P為曲線C1
          x=1+cosθ
          y=sinθ
          (θ為參數(shù))上一點(diǎn),求它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值.
          D.選修4-5:不等式選講
          設(shè)n∈N*,求證:
          C
          1
          n
          +
          C
          2
          N
          +L+
          C
          N
          N
          n(2n-1)

          查看答案和解析>>

          A.選修4-1:幾何證明選講
          如圖,直角△ABC中,∠B=90°,以BC為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E是AB的中點(diǎn).
          求證:DE是⊙O的切線.
          B.選修4-2:矩陣與變換
          已知二階矩陣A有特征值-1及其對(duì)應(yīng)的一個(gè)特征向量為
          1
          -4
          ,點(diǎn)P(2,-1)在矩陣A對(duì)應(yīng)的變換下得到點(diǎn)P′(5,1),求矩陣A.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=
          2
          ,曲線C的參數(shù)方程為
          x=2cosα
          y=sinα
          (α為參數(shù)),求曲線C截直線l所得的弦長(zhǎng).
          D.選修4-5:不等式選講
          已知a,b,c都是正數(shù),且abc=8,求證:log2(2+a)+log2(2+b)+log2(2+c)≥6.

          查看答案和解析>>

          A.如圖,⊙O的直徑AB的延長(zhǎng)線與弦CD的延長(zhǎng)線相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
          B.已知矩陣A=
          .
          1-2
          3-7
          .

          (1)求逆矩陣A-1
          (2)若矩陣X滿足AX=
          3
          1
          ,試求矩陣X.
          C.坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線C1:ρcos(θ+
          π
          4
          )=2
          2
          與曲線C2
          x=4t2
          y=4t
          ,(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
          D.已知x,y,z均為正數(shù),求證:
          x
          yz
          +
          y
          zx
          +
          z
          xy
          1
          x
          +
          1
          y
          +
          1
          z

          查看答案和解析>>

          .P是雙曲線的右支上一點(diǎn),M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點(diǎn),則|PM|-|PN|的最大值為(    )

          A. 6              B.7              C.8                D.9

           

          查看答案和解析>>

          .P是雙曲線的右支上一點(diǎn),M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點(diǎn),則|PM|-|PN|的最大值為(    )

          A. 6              B.7              C.8                D.9

           

          查看答案和解析>>

           

          一、選擇題

          BBACA   DCBBB(分類分布求解)

          二、填空題

          11.{2,7}     12.840    13.1    14.2    15.(圓錐曲線定義)

          16.解:(1)由

             (2)由余弦定理知:

              又

          17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。

             (1)小張沒(méi)有被錄取的概率為:

             (2)小張被一個(gè)單位錄取的概率為

              被兩個(gè)單位同時(shí)錄取的概率為

              被三個(gè)單位錄取的概率為:所以分布列為:

          ξ

          0

          1

          2

          3

          P

              所以:

          18.解:(1)

             

          <legend id="o5kww"></legend>
          <style id="o5kww"><abbr id="o5kww"></abbr></style>

          <strong id="o5kww"><u id="o5kww"></u></strong>
        2. <sub id="o5kww"></sub>

              所以:

          19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

          ,

          則在四邊形BB1D1D中(如圖),

            1. 得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

              即D1O1⊥B1O

                 (2)連接OD1,顯然:∠D1OB1為所求的角,

              容易計(jì)算:∠D1OB1

                  所以:

              20.解:(1)曲線C的方程為

                 (2)當(dāng)直線的斜率不存在時(shí),它與曲線C只有一個(gè)交點(diǎn),不合題意,

                  當(dāng)直線m與x軸不垂直時(shí),設(shè)直線m的方程為

                 代入    ①

                  恒成立,

                  設(shè)交點(diǎn)A,B的坐標(biāo)分別為

              ∴直線m與曲線C恒有兩個(gè)不同交點(diǎn)。

                  ②        ③

               

                     當(dāng)k=0時(shí),方程①的解為

                 

                     當(dāng)k=0時(shí),方程①的解為

                  綜上,由

              21.解:(1)當(dāng)

                  由

              0

              遞增

              極大值

              遞減

                  所以

                 (2)

                     ①

                  由

                      ②

                  由①②得:即得:

                  與假設(shè)矛盾,所以成立

                 (3)解法1:由(2)得:

                 

                  由(2)得:

              解法3:可用數(shù)學(xué)歸納法:步驟同解法2

              解法4:可考慮用不等式步驟略