日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21.如下圖.AB是⊙O的直徑.BD是⊙O的弦.延長BD到點C.使DC=BD.連結(jié)AC交⊙O于點F. 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分12分)
          【小題1】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
          證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,
          AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
          =∠MAE.
          (下面請你完成余下的證明過程)

          【小題2】(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

          【小題3】(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=        °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          查看答案和解析>>

          (本題滿分12分)
          【小題1】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
          下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
          證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,
          AB=BC.∴∠NMC=180°—∠AMN­—∠AMB=180°—∠B—∠AMB=∠MAB
          =∠MAE.
          (下面請你完成余下的證明過程)

          【小題2】(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

          【小題3】(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=        °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)

          查看答案和解析>>

          (本題滿分8分)通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:

          (1)sad 60°=           .

          (2)對于0°<A<180°,∠A的正對值sadA的取值范圍是

          (3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

           

           

           
           A

          B

           

          B

           
           

           

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          (本題滿分8分)通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
          (1)sad 60°=           .
          (2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
          (3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

           

           
           A

           

          查看答案和解析>>

          (本題滿分8分)通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖①在△ABC中,AB=AC,頂角A的正對記作sad A,這時sad A.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
          (1)sad 60°=           .
          (2)對于0°<A<180°,∠A的正對值sad A的取值范圍是
          (3)如圖②,在Rt△ABC中,∠C=90°,sin A,試求sad A的值

           

           
           A

           

          查看答案和解析>>


          同步練習(xí)冊答案