日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 7.如下圖.直角梯形ABCD中.AD∥BC.AD=24.BC=26.∠B=90°.動點(diǎn)P從A開始沿AD邊向D以1的速度運(yùn)動.動點(diǎn)Q從點(diǎn)C開始沿CB以3的速度向點(diǎn)B運(yùn)動.P.Q同時出發(fā).當(dāng)其中一點(diǎn)到達(dá)頂點(diǎn)時.另一點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動時間為.問為何值時.(1)四邊形PQCD是平行四邊形.(2)當(dāng)為何值時.四邊形PQCD為等腰梯形. 查看更多

           

          題目列表(包括答案和解析)

          請嘗試解決以下問題:
          (1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠
          FAE
          FAE

          又AG=AE,AF=AF
          ∴△GAF≌
          △EAF
          △EAF

          GF
          GF
          =EF,故DE+BF=EF.
          (2)運(yùn)用(1)解答中所積累的經(jīng)驗和知識,完成下題:
          如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.
          (3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD2+CE2=DE2始終成立,請說明理由.

          查看答案和解析>>

          請嘗試解決以下問題:
          (1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

          由旋轉(zhuǎn)可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,   ∴∠1+∠3=45°.
          即∠GAF=∠_________.
          又AG=AE,AF=AF
          ∴△GAF≌_______.
          ∴_________=EF,故DE+BF=EF.
          (2)運(yùn)用(1)解答中所積累的經(jīng)驗和知識,完成下題:
          如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.

          (3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

          查看答案和解析>>

          請嘗試解決以下問題:

          (1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.

          感悟解題方法,并完成下列填空:

          將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,

           

           

          由旋轉(zhuǎn)可得:AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,

          ∴∠ABG+∠ABF=90°+90°=180°,

          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.

          ∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.

          ∵∠1=∠2,   ∴∠1+∠3=45°.

          即∠GAF=∠_________.

          又AG=AE,AF=AF

          ∴△GAF≌_______.

          ∴_________=EF,故DE+BF=EF.

          (2)運(yùn)用(1)解答中所積累的經(jīng)驗和知識,完成下題:

          如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.

           

           

          (2)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若∆ABC固定不動,∆AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD+CE=DE始終成立,請說明理由.

           

           

           

          查看答案和解析>>

          請嘗試解決以下問題:
          (1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠______.
          又AG=AE,AF=AF
          ∴△GAF≌______.
          ∴______=EF,故DE+BF=EF.
          (2)運(yùn)用(1)解答中所積累的經(jīng)驗和知識,完成下題:
          如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.
          (3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD2+CE2=DE2始終成立,請說明理由.

          查看答案和解析>>

          請嘗試解決以下問題:
          (1)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
          感悟解題方法,并完成下列填空:
          將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:
          AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
          ∴∠ABG+∠ABF=90°+90°=180°,
          因此,點(diǎn)G,B,F(xiàn)在同一條直線上.
          ∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
          ∵∠1=∠2,∴∠1+∠3=45°.
          即∠GAF=∠______.
          又AG=AE,AF=AF
          ∴△GAF≌______.
          ∴______=EF,故DE+BF=EF.
          (2)運(yùn)用(1)解答中所積累的經(jīng)驗和知識,完成下題:
          如圖2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一點(diǎn),且∠BAE=45°,DE=4,求BE的長.
          (3)類比(1)證明思想完成下列問題:在同一平面內(nèi),將兩個全等的等腰直角三角形ABC和AFG擺放在一起,A為公共頂點(diǎn),∠BAC=∠AGF=90°,若△ABC固定不動,△AFG繞點(diǎn)A旋轉(zhuǎn),AF、AG與邊BC的交點(diǎn)分別為D、E(點(diǎn)D不與點(diǎn)B重合,點(diǎn)E不與點(diǎn)C重合),在旋轉(zhuǎn)過程中,等式BD2+CE2=DE2始終成立,請說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案