日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)矩形一角的平分線分矩形一邊為1cm 和3cm兩部分時.則這個矩形的面積為. 查看更多

           

          題目列表(包括答案和解析)

          矩形OABC在平面直角坐標(biāo)系中位置如圖所示,A、C兩點的坐標(biāo)分別為A(6,0),C(0,-3),直線y=-
          3
          4
          x
          與BC邊相交于D點.
          (1)求點D的坐標(biāo);
          (2)若拋物線y=ax2-
          9
          4
          x
          經(jīng)過點A,求此拋物線的表達(dá)式及對稱軸;
          (3)設(shè)(2)中的拋物線的對稱軸與直線OD交于點M,點P為坐標(biāo)軸上一動點,以P、O、M為頂點的三角形與△OCD相似,求出點M的坐標(biāo)和符合條件的點P的坐標(biāo);
          (4)當(dāng)(3)中符合條件的△POM面積最大時,過點O的直線l將其面積分為1:3兩部分,請直接寫出直線l的解析式.

          查看答案和解析>>

          在矩形AOBC中,OB=6,OA=4.分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數(shù)數(shù)學(xué)公式的圖象與AC邊交于點E.
          (1)設(shè)點E,F(xiàn)的坐標(biāo)分別為:E(x1,y1),F(xiàn)(x2,y2),△AOE與△FOB的面積分別為S1,S2,求證:S1=S2
          (2)若y2=1,求△OEF的面積;
          (3)當(dāng)點F在BC上移動時,△OEF與△ECF的面積差記為S,求當(dāng)k為何值時,S有最大值,最大值是多少?

          查看答案和解析>>

          在矩形AOBC中,OB=6,OA=4.分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數(shù)的圖象與AC邊交于點E.
          (1)設(shè)點E,F(xiàn)的坐標(biāo)分別為:E(x1,y1),F(xiàn)(x2,y2),△AOE與△FOB的面積分別為S1,S2,求證:S1=S2;
          (2)若y2=1,求△OEF的面積;
          (3)當(dāng)點F在BC上移動時,△OEF與△ECF的面積差記為S,求當(dāng)k為何值時,S有最大值,最大值是多少?

          查看答案和解析>>

          在矩形AOBC中,OB=6,OA=4.分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數(shù)的圖象與AC邊交于點E.
          (1)設(shè)點E,F(xiàn)的坐標(biāo)分別為:E(x1,y1),F(xiàn)(x2,y2),△AOE與△FOB的面積分別為S1,S2,求證:S1=S2
          (2)若y2=1,求△OEF的面積;
          (3)當(dāng)點F在BC上移動時,△OEF與△ECF的面積差記為S,求當(dāng)k為何值時,S有最大值,最大值是多少?

          查看答案和解析>>

          在矩形AOBC中,OB=6,OA=4.分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上的一個動點(不與B,C重合),過F點的反比例函數(shù)的圖象與AC邊交于點E.
          (1)設(shè)點E,F(xiàn)的坐標(biāo)分別為:E(x1,y1),F(xiàn)(x2,y2),△AOE與△FOB的面積分別為S1,S2,求證:S1=S2;
          (2)若y2=1,求△OEF的面積;
          (3)當(dāng)點F在BC上移動時,△OEF與△ECF的面積差記為S,求當(dāng)k為何值時,S有最大值,最大值是多少?

          查看答案和解析>>


          同步練習(xí)冊答案