日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 11.AD.BE.CF是△ABC的三條中線.若BC=a,CA=b,AB=c,則AD2+BE2+CF2= . 查看更多

           

          題目列表(包括答案和解析)

          AD、BE、CF是△ABC的三條中線,若BC=a,CA=b,AB=c,則AD2+BE2+CF2=             .

          查看答案和解析>>

          (2013•海滄區(qū)一模)如圖,在△ABC中,點D是BC的中點,作射線AD,在線段AD及其延長線上分別取點E、F,連結(jié)CE、BF.
          (1)請你添加一個條件
          DE=DF
          DE=DF
          ,使得△BDF≌△CDE(不添加輔助線),并證明:△BDF≌△CDE;
          (2)滿足(1)的條件下,若△ABC是等腰直角三角形,∠BAC=90°,點E為AD的中點,連結(jié)BE,CF,已知BC=4,則四邊形BECF是什么圖形?其周長是多少?

          查看答案和解析>>

          課外興趣小組活動時,老師提出了如下問題:

          如圖,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

          小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連結(jié)BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.

          感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.

          (2)問題解決:

          受到(1)的啟發(fā),請你證明下面命題:如圖,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連結(jié)EF.

          ①求證:BE+CF>EF

          ②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.

          (3)問題拓展:

          如圖,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連結(jié)EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          課外興趣小組活動時,老師提出了如下問題:
          如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
          小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
          感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
          (1)問題解決:
          受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
          ①求證:BE+CF>EF;
          ②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
          (2)問題拓展:
          如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          閱讀理
          課外興趣小組活動時,老師提出了如下問題:
          如圖1,△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
          小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使得DE=AD,再連接BE(或?qū)ⅰ鰽CD繞點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三邊關(guān)系可得2<AE<8,則1<AD<4.
          感悟:解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮構(gòu)造以中點為對稱中心的中心對稱圖形,把分散的已知條件和所求證的結(jié)論集中到同一個三角形中.
          (1)問題解決:
          受到(1)的啟發(fā),請你證明下面命題:如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF,DE交AB于點E,DF交AC于點F,連接EF.
          ①求證:BE+CF>EF;
          ②若∠A=90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明;
          (2)問題拓展:
          如圖3,在四邊形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D為頂點作一個60°角,角的兩邊分別交AB、AC于E、F兩點,連接EF,探索線段BE、CF、EF之間的數(shù)量關(guān)系,并加以證明.

          精英家教網(wǎng)

          查看答案和解析>>


          同步練習冊答案