日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 依題意.知1-p2=0.96.又p>0.得p=0.2.----6分 查看更多

           

          題目列表(包括答案和解析)

          已知(1+i)·z=-i那么復(fù)數(shù)z對應(yīng)的點位于復(fù)平面內(nèi)的


          1. A.
            第一象限
          2. B.
            第二象限
          3. C.
            第三象限
          4. D.
            第四象限

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>

          (2012•甘肅一模)(理科)某中學(xué)高一年級美術(shù)學(xué)科開設(shè)書法、繪畫、雕塑三門校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門課互不影響.已知某學(xué)生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學(xué)生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用ξ表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

          查看答案和解析>>

          (2012•甘肅一模)(文科)某中學(xué)高一年級美術(shù)學(xué)科開設(shè)書法、繪畫、雕塑三門校本選修課,學(xué)生可選也可不選,學(xué)生是否選修哪門課互不影響.已知某學(xué)生只選修書法的概率為0.08,只選修書法和繪畫的概率是0.12,至少選修一門的概率是0.88.
          (1)依題意分別計算該學(xué)生選修書法、繪畫、雕塑三門校本選修課的概率;
          (2)用a表示該學(xué)生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,記“f(x)=x2+ax為R上的偶函數(shù)”為事件A,求事件A發(fā)生的概率.

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得,于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>


          同步練習(xí)冊答案