題目列表(包括答案和解析)
(本題滿分14分)
橢圓上任一點
到兩個焦點的距離的和為6,焦距為
,
分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若與
均不重合,設直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)設為橢圓上一動點,
為
關于
軸的對稱點,四邊形
的面積為
,設
,求函數(shù)
的最大值.
(本題滿分14分)
橢圓上任一點
到兩個焦點的距離的和為6,焦距為
,
分別是橢圓的左右頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若與
均不重合,設直線
與
的斜率分別為
,證明:
為定值;
(Ⅲ)設為橢圓上一動點,
為
關于
軸的對稱點,四邊形
的面積為
,設
,求函數(shù)
的最大值.
(本題滿分14分)
橢圓G:的兩個焦點為F1、F2,短軸兩端點B1、B2,已知
F1、F2、B1、B2四點共圓,且點N(0,3)到橢圓上的點最遠距離為
(1)求此時橢圓G的方程;
(2)設斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點E、F,Q為EF的中點,問E、F兩點能否關于過點P(0,)、Q的直線對稱?若能,求出k的取值范圍;若不能,請說明理由.
(本小題滿分14分)
設橢圓(
)的兩個焦點是
和
(
),且橢圓
與圓
有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線
(
)與
交于不同的兩點
、
,若線段
的垂直平分線恒過點
,求實數(shù)
的取值范圍.
(本小題滿分14分)設橢圓與拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
1)求,
的標準方程, 并分別求出它們的離心率
;
2)設直線與橢圓
交于不同的兩點
,且
(其中
坐標原點),請問是否存在這樣的直線
過拋物線
的焦點
若存在,求出直線
的方程;若不存在,請說明理由.
1-15CBDAC CDB 0 5 100 [3.9] 垂直 2或8
16.⑴ ∵
,……………………………… 2分
又∵
,∴
而
為斜三角形,
∵
,∴
. ……………………………………………………………… 4分
∵,∴
. …………………………………………………… 6分
⑵∵,∴
…10分
即,∵
,∴
.…………………………………12分
17.(Ⅰ)從4名運動員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運動員靶位號與參賽號均不相同的方法有1種,所以恰有一名運動員所抽靶位號與參賽號相同的概率為
……………………………4分
(Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分
②
所以2號射箭運動員的射箭水平高…………………………………12分
18.證明:(Ⅰ)在梯形ABCD中,∵,
∴四邊形ABCD是等腰梯形,
且
∴,∴
又∵平面平面ABCD,交線為AC,∴
平面ACFE…………………6分
(Ⅱ)取EF中點G,EB中點H,連結DG、GH、DH,∵DE=DF,∴
∵
平面ACFE,∴
又∵
,∴
又∵
,∴
∴是二面角B―EF―D的平面角.
在△BDE中∴
∴,
∴
又
∴在△DGH中,
由余弦定理得即二面角B―EF―D的大小余弦值
...14分
19.解:(1)由橢圓定義可得,可得
而,
,解得
(4分)
(或解:以為直徑的圓必與橢圓有交點,即
(2)由,得
解得
此時
當且僅當m=2時, (9分)
(3)由
設A,B兩點的坐標分別為,中點Q的坐標為
則,兩式相減得
①
且在橢圓內的部分
又由可知
②
①②兩式聯(lián)立可求得點Q的坐標為
點Q必在橢圓內
又
(14分)
20.解:(1)
故……………………………4分
(2)
故
由此猜測
下面證明:當時,由
得
若
當
當時,
當時,
總之故
在(-
(10分)
又
所以當時,
在(-1,0)上有唯一實數(shù)解,從而
在
上有唯一實數(shù)解。
綜上可知,.
(14分)
21.解:(1)令
令
由①②得
(6分)
(2)由(1)可得
則
又
n
又
………………14分
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com