日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 20. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分16分)已知函數(shù).(Ⅰ)當(dāng)時,求證:函數(shù)上單調(diào)遞增;(Ⅱ)若函數(shù)有三個零點,求的值;

          (Ⅲ)若存在,使得,試求的取值范圍.

          查看答案和解析>>

          (本小題滿分16分) 設(shè)為實數(shù),函數(shù). (1)若,求的取值范圍; (2)求的最小值; (3)設(shè)函數(shù),求不等式的解集.

          查看答案和解析>>

          (本小題滿分16分)

          按照某學(xué)者的理論,假設(shè)一個人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價為元,則他的滿意度為;如果他買進該產(chǎn)品的單價為元,則他的滿意度為.如果一個人對兩種交易(賣出或買進)的滿意度分別為,則他對這兩種交易的綜合滿意度為.

          現(xiàn)假設(shè)甲生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品A、B的單價分別為元和元,甲買進A與賣出B的綜合滿意度為,乙賣出A與買進B的綜合滿意度為

          (1)求關(guān)于的表達式;當(dāng)時,求證:=;

          (2)設(shè),當(dāng)、分別為多少時,甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少? (3)記(2)中最大的綜合滿意度為,試問能否適當(dāng)選取、的值,使得同時成立,但等號不同時成立?試說明理由。

          查看答案和解析>>

          (本小題滿分16分)已知⊙和點.

          (Ⅰ)過點向⊙引切線,求直線的方程;

          (Ⅱ)求以點為圓心,且被直線截得的弦長4的⊙的方程;

          (Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.

           

          查看答案和解析>>

          (本小題滿分16分)已知⊙和點.

          (Ⅰ)過點向⊙引切線,求直線的方程;

          (Ⅱ)求以點為圓心,且被直線截得的弦長為   4的⊙的方程;

          (Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為Q. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.

          查看答案和解析>>

            1.2     2.有的素數(shù)不是奇數(shù)   3.      4.0      5.

            6.   7.  8.[0,2]    9.    10.-3   11.-1 

            12.④    13.     14.①③

           15.解:(1)因為,所以,

              即 

              而  ,所以.故

             。2)因為 

                   所以 

                 由得   所以  

               從而的取值范圍是

           16.(1)證明:因為PB^平面ABCD,MA^平面ABCD

               所以PBMA

               因PBÌ平面BPC,MA (/平面BPC

               所以MA∥平面BPC.同理DA∥平面BPC,

               因為MAÌ平面AMD,ADÌ平面AMD,

               MAADA,所以平面AMD∥平面BPC

           。2)連接AC,設(shè)ACBDE,取PD中點F

               連接EF,MF

               因ABCD為正方形,所以EBD中點.

               因為FPD中點,所以EF∥=PB

               因為AM∥=PB,所以AM∥=EF.所以AEFM為平行四邊形.所以MFAE

               因為PB^平面ABCD,AEÌ平面ABCD,所以PB^AE.所以MF^PB

               因為ABCD為正方形,所以AC^BD

               所以MF^BD.所以MF^平面PBD.又MFÌ平面PMD

               所以平面PMD^平面PBD

             17.解:(1)  令

            則

            由于,則內(nèi)的單調(diào)遞增區(qū)間為

          (2)依題意, 由周期性 

                           

          (3)函數(shù)為單調(diào)增函數(shù),且當(dāng)時,

               此時有

               當(dāng)時,由于,而,則有,

                 即,即

               而函數(shù)的最大值為,且為單調(diào)增函數(shù),

                 則當(dāng)時,恒有

               綜上,在內(nèi)恒有,所以方程內(nèi)沒有實數(shù)解.

          18.解:(1)由題意得:(100-x)? 3000 ?(1+2x%) ≥100×3000,

             即x2-50x≤0,解得0≤x≤50,    又∵x>0   ∴0<x≤50;                        

               (2)設(shè)這100萬農(nóng)民的人均年收入為y元,

             則y=   =

                即y=-[x-25(a+1)]2+3000+475(a+1)2     (0<x≤50) 

            (i)當(dāng)0<25(a+1)≤50,即0<a≤1,當(dāng)x=25(a+1)時,y最大;

           (ii)當(dāng)25(a+1)>50,即a >1,函數(shù)y在(0,50]單調(diào)遞增,∴當(dāng)x=50時,y取最大值.

                 答:在0<a≤1時,安排25(a+1)萬人進入企業(yè)工作,在a>1時安排50萬人進入企業(yè)

                       工作,才能使這100萬人的人均年收入最大.

            19.(1)解:由①知:;由③知:,即; ∴ 

                (2 ) 證明:由題設(shè)知:;

                     由,得,有

            設(shè),則,

               ∴

             即  ∴函數(shù)在區(qū)間[0,1]上同時適合①②③.

              (3) 證明:若,則由題設(shè)知:,且由①知,

                    ∴由題設(shè)及③知:

                  ,矛盾;

                若,則則由題設(shè)知:, 且由①知,

                   ∴同理得:

                  ,

                   矛盾;故由上述知:

          20.解: (1) 由題設(shè)知:對定義域中的均成立.

                           ∴.   

                 即    ∴對定義域中的均成立.

                            ∴(舍去)或.       ∴ .                           

               (2) 由(1)及題設(shè)知:,

                            設(shè),

               ∴當(dāng)時,  ∴.                            

                        當(dāng)時,,即.

                         ∴當(dāng)時,上是減函數(shù).    

                        同理當(dāng)時,上是增函數(shù). 

               (3) 由題設(shè)知:函數(shù)的定義域為

                         ∴①當(dāng)時,有.  由(1)及(2)題設(shè)知:為增函數(shù),由其值域為(無解);

             ②當(dāng)時,有.由(1)及(2)題設(shè)知:為減函數(shù), 由其值域為,.

                    (4) 由(1)及題設(shè)知:

                

                   則函數(shù)的對稱軸,.

                  ∴函數(shù)上單調(diào)減.    

             ∴

               是最大實數(shù)使得恒有成立,

            

               ∴,即

           


          同步練習(xí)冊答案