日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由橢圓定義可知..-4分 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          設(shè)橢圓 )的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

          (1)求橢圓的方程;

          (2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

          【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

          解:(1)橢圓的頂點為,即

          ,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

          (2)由題可知,直線與橢圓必相交.

          ①當(dāng)直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

          ②當(dāng)直線斜率存在時,設(shè)存在直線,且,.

          ,       ----------7分

          ,,               

             = 

          所以,                               ----------10分

          故直線的方程為 

           

          查看答案和解析>>

          下列說法中:
          ①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
          ②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
          11
          3
          ;
          ③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
          ④對于函數(shù)f(x)=
          x-1
          x+1
          ,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
          正確的個數(shù)為( 。
          A、1個B、2個C、3個D、4個

          查看答案和解析>>

          下列說法中

          ①  若定義在R上的函數(shù)滿足,則6為函數(shù)的周期;

          ② 若對于任意,不等式恒成立,則

          ③ 定義:“若函數(shù)對于任意R,都存在正常數(shù),使恒成立,則稱函數(shù)為有界泛函.”由該定義可知,函數(shù)為有界泛函;

          ④對于函數(shù) 設(shè),,…,),令集合,則集合為空集.正確的個數(shù)為

          A.1個             B.2個              C.3個              D.4個

           

          查看答案和解析>>

          下列說法中:
          ①若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x-1),則6為函數(shù)f(x)的周期;
          ②若對于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
          11
          3
          ;
          ③定義:“若函數(shù)f(x)對于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函;
          ④對于函數(shù)f(x)=
          x-1
          x+1
          ,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},則集合M為空集.
          正確的個數(shù)為( 。
          A.1個B.2個C.3個D.4個

          查看答案和解析>>


          同步練習(xí)冊答案