日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(1)將t=代入x的表達式得x=2p()2y2=2px,表示的是以(,0)為焦點以x=-為準(zhǔn)線的拋物線 說明1:將參數(shù)方程化成普通方程.關(guān)鍵在于消去參數(shù).此過程稱消參.以上通過一個式子解出參數(shù)再代入另一式子的方法稱代入法 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

          【解析】第一問利用設(shè)橢圓的方程為,由題意得

          解得

          第二問若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為

          所以

          所以.解得。

          解:⑴設(shè)橢圓的方程為,由題意得

          解得,故橢圓的方程為.……………………4分

          ⑵若存在直線滿足條件的方程為,代入橢圓的方程得

          因為直線與橢圓相交于不同的兩點,設(shè)兩點的坐標(biāo)分別為,

          所以

          所以

          因為,即,

          所以

          所以,解得

          因為A,B為不同的兩點,所以k=1/2.

          于是存在直線L1滿足條件,其方程為y=1/2x

           

          查看答案和解析>>

          已知向量),向量,

          .

          (Ⅰ)求向量; (Ⅱ)若,求.

          【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關(guān)系式的運用。

          (1)問中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知, ;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知, .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>

          已知曲線上動點到定點與定直線的距離之比為常數(shù)

          (1)求曲線的軌跡方程;

          (2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;

          (3)以曲線的左頂點為圓心作圓,設(shè)圓與曲線交于點與點,求的最小值,并求此時圓的方程.

          【解析】第一問利用(1)過點作直線的垂線,垂足為D.

          代入坐標(biāo)得到

          第二問當(dāng)斜率k不存在時,檢驗得不符合要求;

          當(dāng)直線l的斜率為k時,;,化簡得

          第三問點N與點M關(guān)于X軸對稱,設(shè),, 不妨設(shè)

          由于點M在橢圓C上,所以

          由已知,則

          ,

          由于,故當(dāng)時,取得最小值為

          計算得,,故,又點在圓上,代入圓的方程得到.  

          故圓T的方程為:

           

          查看答案和解析>>

          某商店進了一批服裝,每件進價為80元,售價為100元,每天可售出20件.為了促進銷售,商店開展購一件服裝贈送一件小禮品的活動,市場調(diào)研發(fā)現(xiàn):禮品價格為3元時,每天銷售量為26件;禮品價格為5元時,每天銷售量為30件.假設(shè)這批服裝每天的銷售量t(件)是禮品價格x(元)的一次函數(shù).
          (1)將t表示為x的函數(shù);
          (2)如果這批服裝每天的毛利潤為當(dāng)天賣出商品的銷售價減去禮品價格與進價后的差,試為禮品確定一個恰當(dāng)?shù)膬r格,使這批服裝每天的毛利潤最大?

          查看答案和解析>>

          已知函數(shù)f(t)=
          1-t
          1+t
          ,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(π,
          17π
          12
          ).

          (Ⅰ)將函數(shù)g(x)化簡成Asin(ωx+φ)+B(A>0,ω>0,φ∈[0,2π))的形式;
          (Ⅱ)求函數(shù)g(x)的值域.

          查看答案和解析>>


          同步練習(xí)冊答案