日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 為直線l上任意一點(diǎn).按=平移后得到(x/,y/),則:x/=x+2,y/=y-3,從而x=x/-2,y=y/+3代入直線l的方程有3(x/-2)-2(y/+3)+12=0即3x/-2y/=0,于是直線方程為3x-2y=0 說明:這一方法的實(shí)質(zhì)是代入法 查看更多

           

          題目列表(包括答案和解析)

          已知點(diǎn)P(-2
          2
          ,0),Q(2
          2
          ,0)
          ,動(dòng)點(diǎn)N(x,y),設(shè)直線NP,NQ的斜率分別記為k1,k2,記k1?k2=-
          1
          4
          (其中“?”可以是四則運(yùn)算加、減、乘、除中的任意一種運(yùn)算),坐標(biāo)原點(diǎn)為O,點(diǎn)M(2,1).
          (Ⅰ)探求動(dòng)點(diǎn)N的軌跡方程;
          (Ⅱ)若“?”表示乘法,動(dòng)點(diǎn)N的軌跡再加上P,Q兩點(diǎn)記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個(gè)不同的點(diǎn).
          (。┤粼c(diǎn)O在以AB為直徑的圓的內(nèi)部,試求出直線l在y軸上的截距m的取值范圍.
          (ⅱ)試求出△AOB面積的最大值及此時(shí)直線l的方程.

          查看答案和解析>>

          已知點(diǎn),動(dòng)點(diǎn)N(x,y),設(shè)直線NP,NQ的斜率分別記為k1,k2,記(其中“?”可以是四則運(yùn)算加、減、乘、除中的任意一種運(yùn)算),坐標(biāo)原點(diǎn)為O,點(diǎn)M(2,1).
          (Ⅰ)探求動(dòng)點(diǎn)N的軌跡方程;
          (Ⅱ)若“?”表示乘法,動(dòng)點(diǎn)N的軌跡再加上P,Q兩點(diǎn)記為曲線C,直線l平行于直線OM,且與曲線C交于A,B兩個(gè)不同的點(diǎn).
          (。┤粼c(diǎn)O在以AB為直徑的圓的內(nèi)部,試求出直線l在y軸上的截距m的取值范圍.
          (ⅱ)試求出△AOB面積的最大值及此時(shí)直線l的方程.

          查看答案和解析>>

          過曲線上一點(diǎn)與以此點(diǎn)為切點(diǎn)的切線垂直的直線,叫做曲線在該點(diǎn)的法線.
          已知拋物線C的方程為y=ax2(a>0,x≠0).點(diǎn)M(x0,y0)是C上任意點(diǎn),過點(diǎn)M作C的切線l,法線m.
          (I)求法線m與拋物線C的另一個(gè)交點(diǎn)N的橫坐標(biāo)xN取值范圍;
          (II)設(shè)點(diǎn)F是拋物線的焦點(diǎn),連接FM,過點(diǎn)M作平行于y軸的直線n,設(shè)m與x軸的交點(diǎn)為S,n與x軸的交點(diǎn)為K,設(shè)l與x軸的交點(diǎn)為T,求證∠SMK=∠FMN

          查看答案和解析>>

          過曲線上一點(diǎn)與以此點(diǎn)為切點(diǎn)的切線垂直的直線,叫做曲線在該點(diǎn)的法線.
          已知拋物線C的方程為y=ax2(a>0,x≠0).點(diǎn)M(x,y)是C上任意點(diǎn),過點(diǎn)M作C的切線l,法線m.
          (I)求法線m與拋物線C的另一個(gè)交點(diǎn)N的橫坐標(biāo)xN取值范圍;
          (II)設(shè)點(diǎn)F是拋物線的焦點(diǎn),連接FM,過點(diǎn)M作平行于y軸的直線n,設(shè)m與x軸的交點(diǎn)為S,n與x軸的交點(diǎn)為K,設(shè)l與x軸的交點(diǎn)為T,求證∠SMK=∠FMN

          查看答案和解析>>


          同步練習(xí)冊(cè)答案