日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 例1.求直線y=4x在變換下得到的方程.并說明二者的幾何關(guān)系 查看更多

           

          題目列表(包括答案和解析)

          在直角坐標(biāo)系中,定義:(xnyn)
          11
          1-1
          =(xn+1,yn+1)
          ,即
          xn+1=xn+yn
          yn+1=xn-yn
          (n∈N*)為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換.我們把它稱為點變換(或矩陣變換).已知P1(1,0).
          (1)求直線y=x在矩陣變換下的直線方程;
          (2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫出dn的通項公式;
          (3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過點變換得到的一列點.求數(shù)列xn,yn的通項公式.

          查看答案和解析>>

          在直角坐標(biāo)系中,定義:,即(n∈N*)為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換.我們把它稱為點變換(或矩陣變換).已知P1(1,0).
          (1)求直線y=x在矩陣變換下的直線方程;
          (2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫出dn的通項公式;
          (3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過點變換得到的一列點.求數(shù)列xn,yn的通項公式.

          查看答案和解析>>

          在直角坐標(biāo)系中,定義:,即(n∈N*)為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換.我們把它稱為點變換(或矩陣變換).已知P1(1,0).
          (1)求直線y=x在矩陣變換下的直線方程;
          (2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫出dn的通項公式;
          (3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過點變換得到的一列點.求數(shù)列xn,yn的通項公式.

          查看答案和解析>>

          (2000•上海)已知復(fù)數(shù)z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實數(shù),i為虛數(shù)單位,且對于任意復(fù)數(shù)z,有w=
          .
          z0
          .
          z
          ,|w|=2|z|.
          (Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關(guān)系式;
          (Ⅱ)將(x、y)作為點P的坐標(biāo),(x'、y')作為點Q的坐標(biāo),上述關(guān)系可以看作是坐標(biāo)平面上點的一個變換:它將平面上的點P變到這一平面上的點Q,當(dāng)點P在直線y=x+1上移動時,試求點P經(jīng)該變換后得到的點Q的軌跡方程;
          (Ⅲ)是否存在這樣的直線:它上面的任一點經(jīng)上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.

          查看答案和解析>>

          (2012•福建模擬)(1)選修4-2:矩陣與變換
          已知向量
          1
          -1
          在矩陣M=
          1m
          01
          變換下得到的向量是
          0
          -1

          (Ⅰ)求m的值;
          (Ⅱ)求曲線y2-x+y=0在矩陣M-1對應(yīng)的線性變換作用下得到的曲線方程.
          (2)選修4-4:極坐標(biāo)與參數(shù)方程
          在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.已知點M的極坐標(biāo)為(4
          2
          ,
          π
          4
          ),曲線C的參數(shù)方程為
          x=1+
          2
          cosα
          y=
          2
          sinα
          (α為參數(shù)).
          (Ⅰ)求直線OM的直角坐標(biāo)方程;
          (Ⅱ)求點M到曲線C上的點的距離的最小值.
          (3)選修4-5:不等式選講
          設(shè)實數(shù)a、b滿足2a+b=9.
          (Ⅰ)若|9-b|+|a|<3,求x的取值范圍;
          (Ⅱ)若a,b>0,且z=a2b,求z的最大值.

          查看答案和解析>>


          同步練習(xí)冊答案