日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)設(shè)是方程的實(shí)數(shù)根.求證:對(duì)于定義域中的任意的.當(dāng)且時(shí). 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0
          1
          4
          p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
          |p0|
          2

          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
          1
          4
          p
          2
          1
          ),E′(p2,
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=數(shù)學(xué)公式x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0,數(shù)學(xué)公式p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=數(shù)學(xué)公式
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,數(shù)學(xué)公式),E′(p2,數(shù)學(xué)公式p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=數(shù)學(xué)公式
          (3)設(shè)D={ (x,y)|y≤x-1,y≥數(shù)學(xué)公式(x+1)2-數(shù)學(xué)公式}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p0,
          1
          4
          p02)(p0≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=
          |p0|
          2
          ;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,
          1
          4
          p21
          ),E′(p2,
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy上,給定拋物線L:y=x2,實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn)A(p0,p0)(p0≠0)作L的切線教y軸于點(diǎn)B。證明:對(duì)線段AB上任一點(diǎn)Q(p,q)有φ(p,q)=;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0。過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,p12),E′(p2p22),l1,l2與y軸分別交與F,F(xiàn)'。線段EF上異于兩端點(diǎn)的點(diǎn)集記為X。證明:M(a,b)∈X|P1|>|P2|φ(a,b)=;
          (3)設(shè)D={(x,y)|y≤x-1,y≥(x+1)2-},當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax)。

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實(shí)數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點(diǎn),A(p,p2)(p≠0),作L的切線交y軸于點(diǎn)B.證明:對(duì)線段AB上的任一點(diǎn)Q(p,q),有φ(p,q)=;
          (2)設(shè)M(a,b)是定點(diǎn),其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點(diǎn)分別為E(p1,),E′(p2,p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點(diǎn)的點(diǎn)集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          (3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(diǎn)(p,q)取遍D時(shí),求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          一.BCAAC      DAAAC

           

          二.11.5  12.0。保.(4,12)14.[-3,0)∪(3,+∞)。保耽佗冖

          三.16解:(1)由正弦定理有:;。。。。。(2分)

              ∴,;。。。。。。。。。。。。。(4分)

                                    。。。。。。。。。。。。。。。。。。。(7分)

          (2)由;。。。。。。。。。。。。。。。。。。。。。。(8分)

          ;。。。。。。。。(10分)∴。。。。。。。。。。。。。(12分)

           

          17。解:(Ⅰ)由題意可知    數(shù)列是等差數(shù)列  ………(2分)

          當(dāng)時(shí),

          兩式相減,得      ………………………(4分)

          時(shí)也成立

          的通項(xiàng)公式為:     ………………………………(6分)

          (Ⅱ)由前項(xiàng)和公式得

          當(dāng)時(shí),………………………………………(8分)

          最大, 則有 ,解得 …………………………….(12分)

          18。解:(Ⅰ)當(dāng)時(shí),,.

                   . ……………………………………… 2分

                   ∵ ,

              解得 .

          ∴ 當(dāng)時(shí),使不等式成立的x的取值范圍是

          .…………………………………………… 5分

                (Ⅱ)∵ ,…… 8分

                      ∴ 當(dāng)m<0時(shí),;

                         當(dāng)m=0時(shí), ;

                         當(dāng)時(shí),;

                         當(dāng)m=1時(shí),

                         當(dāng)m>1時(shí),.  .............................................12

          19。解:設(shè)對(duì)甲廠投入x萬元(0≤x≤c),則對(duì)乙廠投入為c―x萬元.所得利潤(rùn)為

          y=x+40(0≤x≤c) ……………………(3分)

          =t(0≤t≤),則x=c-t2

          ∴y=f(t)=-t2+40t+c=-(t―20)2+c+400……………………(6分)

          當(dāng)≥20,即c≥400時(shí),則t=20, 即x=c―400時(shí), ymax =c+400… (8分)

          當(dāng)0<<20, 即0<c<400時(shí),則t=,即x=0時(shí),ymax=40 .…(10分)

          答:若政府投資c不少于400萬元時(shí),應(yīng)對(duì)甲投入c―400萬元, 乙對(duì)投入400萬元,可獲得最大利潤(rùn)c+400萬元.政府投資c小于400萬元時(shí),應(yīng)對(duì)甲不投入,的把全部資金c都投入乙商品可獲得最大利潤(rùn)40萬元.…(12分)

          20。解:(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

          ∴a=1,b=c=,

          故C的方程為:y2+=1      ………………………………………(5分)

          (2)由=λ得-=λ(-),(1+λ)=+λ,

          ∴λ+1=4,λ=3             ………………………………………………(7分)

          設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

          得(k2+2)x2+2kmx+(m2-1)=0

          Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

          x1+x2=, x1x2=   ………………………………………………(9分)

          ∵=3 ∴-x1=3x2

          消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

          整理得4k2m2+2m2-k2-2=0   ………………………………………………(11)分

           

          m2=時(shí),上式不成立;m2≠時(shí),k2=,                                  

          因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

          容易驗(yàn)證k2>2m2-2成立,所以(*)成立

          即所求m的取值范圍為(-1,-)∪(,1)     ………………………(13分)

          21. 解:(Ⅰ)易知0是f(x)-x=0的根………………………(1分)

                                     0<(x)=+sinx≤<1………..(3分)

                      ∴f(x)∈M…………………………………………………(4分)

           

          Ⅱ)假設(shè)存在兩個(gè)實(shí)根,則不妨設(shè),由題知存在實(shí)數(shù),使得成立。∵,,∴

          與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根……………………(8分)

          (Ⅲ) 不妨設(shè),∵,∴為增函數(shù),∴,又∵∴函數(shù)為減函數(shù),∴,………………….(10分)

          ,即,……..(12分)

          ….(14分)

           


          同步練習(xí)冊(cè)答案