日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿(mǎn)分14分)

          已知函數(shù)。

          (1)證明:

          (2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

          (3)設(shè)數(shù)列滿(mǎn)足:,設(shè),

          若(2)中的滿(mǎn)足對(duì)任意不小于2的正整數(shù)恒成立,

          試求的最大值。

          查看答案和解析>>

          (本小題滿(mǎn)分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿(mǎn)足,. w.w.w.k.s.5.u.c.o.m    

          (Ⅰ)當(dāng)點(diǎn)軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;

          (Ⅱ)過(guò)的直線與軌跡交于兩點(diǎn),又過(guò)作軌跡的切線、,當(dāng),求直線的方程.

          查看答案和解析>>

          (本小題滿(mǎn)分14分)設(shè)函數(shù)

           (1)求函數(shù)的單調(diào)區(qū)間;

           (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

           (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

          查看答案和解析>>

          (本小題滿(mǎn)分14分)

          已知,其中是自然常數(shù),

          (1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

          (2)求證:在(1)的條件下,

          (3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          (本小題滿(mǎn)分14分)

          設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。

          (I)求數(shù)列的通項(xiàng)公式;

          (II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;

          (III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿(mǎn)足:對(duì)任意正整數(shù)恒成立,求的最小值。

          查看答案和解析>>

          1.D    2.B    3.C    4.B    5.A    6.B    7.B    8.D    9.C    10.C

          l1.A   12.C

          13.

          14.15

          15.

          16.

          提示:

          1.D   

          2.B    視力住0.9以上的頻率為,人數(shù)為

          3.C    ,且

                  若,則

                  反之,若,則

          4.B    ,由,得

          5.A   

          6.B   

          當(dāng)時(shí),,由;

          當(dāng)時(shí),;

              當(dāng)時(shí),,由

          7.B    該幾何體是上面是正四棱錐,下面為正方體,體積為

          8.D   

          9.C    ,

          ,

          ,

          ,

          10.C  

          ,或

          1l.A   設(shè)

          方程為

          過(guò)點(diǎn)

          ,

          ,

          ,

           12.C  畫(huà)出平面區(qū)域

          的圓心,半徑為l,

          的最大值為的最小值為

          的最大值為,最小值為

          13.

              ,   

          14.15  ;

              ;

             

          15.

             

             

             

          16.

              又

             

          17.解:(1),                          (2分)

          .                            (4分)

                  由余弦定理,得.                                (6分)

          (2),                                 (7分)

                (9分)                               (10分)

                                                   (11分)

                                      (12分)

          18.解:(1)的可能取值為l,2,3,4.

                 

                                                        (4分)

                  ∴甲取球次數(shù)的數(shù)學(xué)期望. (6分)

          (2)由題意,兩人各自從自己的箱子里任取一球比顏色

          共有(種)不同情形,                            (8分)

          每種情形都是等可能,記甲獲勝為事件A,則

                              (11分)

                  所以甲獲勝的概率小于乙獲勝的概率,這個(gè)游戲規(guī)則不公平           (12分)

          19.解:以為原點(diǎn),、所在的直線為

          ,,軸,建立如圖所示的空間直角坐標(biāo)系,

                              (3分)

          (1),

          即直線所成角的余角的余弦值為             (6分)

          (2)設(shè)

                  由平面

             得

          ,即的中點(diǎn).                                 (9分)

          (3)由(2)知為平面的法向量.

                  設(shè)為平面的法向量,

                 

                  由

          ,

          ,

          即二面角的余弦值為                (12分)

          (非向量解法參照給分)

          20.(1)解:成等比數(shù)列,,即

          ,                                         (3分)

                                       (5分)

          (2)證明: .                          (6分)

                  是首項(xiàng)為2,公差為2的等差數(shù)列,

                                                   (7分)

                 

                  (當(dāng)且僅當(dāng)時(shí)取“=”).                                                 ①              (9分)

                 

               當(dāng)且僅當(dāng)時(shí)取“=”.                     ②            (11分)

                  又①②中等號(hào)不可能同時(shí)取到,  (12分)

          21.解:(1)設(shè)

          對(duì)稱(chēng)軸方程.由題意恒成立,                        (2分)

          在區(qū)間上單凋遞增,                                (3分)

                  ∴當(dāng)且僅當(dāng)橢圓上的點(diǎn)在橢圓的左、右頂點(diǎn)時(shí)取得最小值與最大值.(4分)

          安徽高中數(shù)學(xué)網(wǎng)站注:這里用橢圓第二定義根簡(jiǎn)單直觀)

          (2)由已知與(1)得:,

          ,                                  (5分)

          ∴橢圓的標(biāo)準(zhǔn)方程為.                                 (6分)

          (3)設(shè),聯(lián)立

          .                             (7分)

          ,(8分)

          ∵橢圓的右頂點(diǎn)為,

                                                   (9分)

                  解得:,且均滿(mǎn)足,           (10分)

                  當(dāng)時(shí),的方程為,直線過(guò)定點(diǎn)(2,0),與已知矛盾.

          當(dāng)時(shí),的方程為,直線過(guò)定點(diǎn)(,0),       (11分)

          ∴直線過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為(,0).                              (12分)

          22,解:(1)由題意:的定義域?yàn)?sub>,且

          ,故上是單調(diào)遞增函數(shù).          (2分)

          (2)由(1)可知:

          ① 若,則,即上恒成立,此時(shí)上為增函數(shù),

          (舍去).                       (4分)

          ② 若,則,即上恒成立,此時(shí)上為減函數(shù),

          (舍去).                 (6分)

                  ③ 若,令,

                  當(dāng)時(shí),上為減函數(shù),

                  當(dāng)時(shí),上為增函數(shù),

                              (9分)

          綜上可知:.                                           (10分)(3)

                  又                                         (11分)

                  令

                  上是減函數(shù),,即,

                  上也是減函數(shù),

                  令,∴當(dāng)恒成立時(shí),.(14分)

           

           


          同步練習(xí)冊(cè)答案