日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖.已知曲線:在點(diǎn)處的切線與軸交于點(diǎn).過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn).曲線在點(diǎn)處的切線與軸交于點(diǎn).過(guò)點(diǎn)作軸的垂線交曲線于點(diǎn).--.依次得到一系列點(diǎn)..--..設(shè)點(diǎn)的坐標(biāo)為(). 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動(dòng)直線l與C1相切,與C2相交于A,B兩點(diǎn),曲線C2在A,B處的切線相交于點(diǎn)M.
          (1)當(dāng)MA⊥MB時(shí),求直線l的方程;
          (2)試問(wèn)在y軸上是否存在兩個(gè)定點(diǎn)T1,T2,當(dāng)直線MT1,MT2斜率存在時(shí),兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
          (Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無(wú)關(guān)),并求出這個(gè)定值;
          (Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

          查看答案和解析>>

          如圖,已知曲線與拋物線c2:x2=2py(p>0)的交點(diǎn)分別為A、B,曲線c1和拋物線c2在點(diǎn)A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
          (Ⅰ)當(dāng)為定值時(shí),求證k1•k2為定值(與p無(wú)關(guān)),并求出這個(gè)定值;
          (Ⅱ)若直線l2與y軸的交點(diǎn)為D(0,-2),當(dāng)a2+b2取得最小值9時(shí),求曲線c1和c2的方程.

          查看答案和解析>>

          精英家教網(wǎng)已知函數(shù)f(x)=x3+x2,數(shù)列|xn|(xn>0)的第一項(xiàng)xn=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在(xn+1,f(xn+1))處的切線與經(jīng)過(guò)(0,0)和(xn,f (xn))兩點(diǎn)的直線平行(如圖).
          求證:當(dāng)n∈N*時(shí),
          (Ⅰ)xn2+xn=3xn+12+2xn+1;
          (Ⅱ)(
          1
          2
          )n-1xn≤(
          1
          2
          )n-2

          查看答案和解析>>

          已知函數(shù)f(x)=ex(x3-6x2+3x+a),
          (Ⅰ)當(dāng)a=1時(shí),求函數(shù)在(0,f(0))處的切線方程;
          (Ⅱ)若函數(shù)f(x)有三個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍;
          (Ⅲ)定義:如果曲線C上存在不同點(diǎn)的兩點(diǎn)A(x1,y1 ),B(x2,y2 ),過(guò)AB的中點(diǎn)且垂直于x軸的直線交曲線C于點(diǎn)M,使得直線AB與曲線C在M處的切線平行,則稱曲線C有“平衡切線”.
          試判斷函數(shù)G(x)=[f'(x)-f(x)]•e-x+ex的圖象是否有“平衡切線”,為什么?

          查看答案和解析>>

           

          一.選擇題   1-5   6-10   11-12     BCDCA  DADBC  AC

           

          二.填空題   13.  ;   14. ;    15.

           16.

           

          三、解答題

          17.【解】(Ⅰ)由整理得,

          ,------2分

          ,      -------5分

          ,∴。                  -------7分

          【解】(Ⅱ)∵,∴最長(zhǎng)邊為,              --------8分

          ,∴,              --------10分

          為最小邊,由余弦定理得,解得,

          ,即最小邊長(zhǎng)為1                      --------12分

           

          18.【解】(Ⅰ)∵,∴.---2分

          ,得,

          ,∴,即,∴,------4分

          當(dāng)時(shí),的單調(diào)遞增區(qū)間為;------5分

          當(dāng)時(shí),.------6分

          的單調(diào)遞減區(qū)間為.------7分

          (Ⅱ)∵時(shí),;------8分

          時(shí),;時(shí),,------9分

          處取得極大值-7.  ------10分

          ,解得.------12分                                

           

          19.【解】(Ⅰ)由莖葉圖可求出10次記錄下的有記號(hào)的紅鯽魚(yú)與中國(guó)金魚(yú)數(shù)目的平均數(shù)均為20,故可認(rèn)為池塘中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)目相同,設(shè)池塘中兩種魚(yú)的總數(shù)是,則有

          ,                                        ------------3分

          即  

          所以,可估計(jì)水庫(kù)中的紅鯽魚(yú)與中國(guó)金魚(yú)的數(shù)量均為25000.      ------------6分

          (Ⅱ)從上述對(duì)總體的估計(jì)數(shù)據(jù)獲知,從池塘隨機(jī)捕出1只魚(yú),它是中國(guó)金魚(yú)的概率為.隨機(jī)地從池塘逐只有放回地捕出5只魚(yú),5只魚(yú)都是紅鯽魚(yú)的概率是,所以其中至少有一只中國(guó)金魚(yú)的概率.------12分

          20.【解】在中,,,∴

          ,∴四邊形為正方形.

                 ----6分

          (Ⅱ)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面.         ------8分

          證明如下:

              如圖,取的中點(diǎn),連、、,

          、、分別為、的中點(diǎn),

          平面,平面,

          平面.        ------10分

          同理可證平面

          ∴平面平面

          平面,∴平面.   ------12分

           

          21.【解】(Ⅰ)法1:依題意顯然的斜率存在,可設(shè)直線的方程為,

          整理得 . ①    ---------------------2分

              設(shè)是方程①的兩個(gè)不同的根,

              ∴,   ②                  ----------------4分

              且,由是線段的中點(diǎn),得

              ,∴

              解得,這個(gè)值滿足②式,

              于是,直線的方程為,即      --------------6分

              法2:設(shè),,則有

                    --------2分

              依題意,,∴.            ---------------------4分

          的中點(diǎn), ∴,,從而

          直線的方程為,即.    ----------------6分

          (Ⅱ)∵垂直平分,∴直線的方程為,即,

          代入橢圓方程,整理得.  ③             ---------------8分

          又設(shè),的中點(diǎn)為,則是方程③的兩根,

          ,.-----10分

          到直線的距離,故所求的以線段的中點(diǎn)為圓心且與直線相切的圓的方程為:.-----------12分

           

          22.【解】(Ⅰ)由求導(dǎo)得

          ∴曲線在點(diǎn)處的切線方程為,即

          此切線與軸的交點(diǎn)的坐標(biāo)為

          ∴點(diǎn)的坐標(biāo)為.即.                -------------------2分

          ∵點(diǎn)的坐標(biāo)為),在曲線上,所以,

          ∴曲線在點(diǎn)處的切線方程為---4分

          ,得點(diǎn)的橫坐標(biāo)為

          ∴數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列.

          ).     ------------------6分

          (Ⅱ)∵,

          .---------10分

          (Ⅲ)因?yàn)?sub>,所以,

          所以數(shù)列的前n項(xiàng)和的前n項(xiàng)和為①,

          ---------12分

           

          ②,

          ①―②得

          ,

          所以          ---------14分

           

           

           

           

           

           

           

           

           


          同步練習(xí)冊(cè)答案