日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析]⑴連結(jié)..點(diǎn)為的中點(diǎn).. 查看更多

           

          題目列表(包括答案和解析)

          如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點(diǎn).

          (Ⅰ)證明:OD//平面ABC;

          (Ⅱ)能否在EM上找一點(diǎn)N,使得ON⊥平面ABDE?若能,請指出點(diǎn)N的位置,并加以證明;若不能,請說明理由.

          【解析】第一問:取AC中點(diǎn)F,連結(jié)OF、FB.∵F是AC的中點(diǎn),O為CE的中點(diǎn),

          ∴OF∥EA且OF=且BD=

          ∴OF∥DB,OF=DB,

          ∴四邊形BDOF是平行四邊形。

          ∴OD∥FB

          第二問中,當(dāng)N是EM中點(diǎn)時,ON⊥平面ABDE。           ………7分

          證明:取EM中點(diǎn)N,連結(jié)ON、CM, AC=BC,M為AB中點(diǎn),∴CM⊥AB,

          又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

          ∴CM⊥面ABDE,∵N是EM中點(diǎn),O為CE中點(diǎn),∴ON∥CM,

          ∴ON⊥平面ABDE。

           

          查看答案和解析>>

          如圖,三棱錐中,側(cè)面底面, ,且,.(Ⅰ)求證:平面;

          (Ⅱ)若為側(cè)棱PB的中點(diǎn),求直線AE與底面所成角的正弦值.

          【解析】第一問中,利用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以第二問中結(jié)合取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

           (Ⅰ) 證明:由用由知, ,

          又AP=PC=2,所以AC=2,

          又AB=4, BC=2,,所以,所以,即,

          又平面平面ABC,平面平面ABC=AC, 平面ABC,

          平面ACP,所以

          ………………………………………………6分

          (Ⅱ)如圖, 取AC中點(diǎn)O,連接PO、OB,并取OB中點(diǎn)H,連接AH、EH,

          因?yàn)镻A=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

          又EH//PO,所以EH平面ABC ,

          為直線AE與底面ABC 所成角,

          ………………………………………10分

          又PO=1/2AC=,也所以有EH=1/2PO=,

          由(Ⅰ)已證平面PBC,所以,即,

          ,

          于是

          所以直線AE與底面ABC 所成角的正弦值為

           

          查看答案和解析>>

          如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.

          (Ⅰ)求證:CN∥平面AMB1

          (Ⅱ)求證: B1M⊥平面AMG.

          【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

          第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

          解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分

          ∵CM   ,NP   ,∴CM       NP, …………2分

          ∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

          ∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

          (Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

              ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

          ∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

          設(shè):AC=2a,則

          …………………………8分

          同理,…………………………………9分

          ∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

          ………………………………10分

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

          從而,

          所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進(jìn)行分析判斷.

           

          查看答案和解析>>

          已知正四棱柱ABCD- A1B1C1D1中 ,AB=2,CC1=  E為CC1的中點(diǎn),則直線AC1與平面BED的距離為

          A、2   B、  C、  D、1

          【解析】連結(jié)交于點(diǎn),連結(jié),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821171349753116/SYS201207182117233256238238_ST.files/image007.png">是中點(diǎn),所以,且,所以,即直線 與平面BED的距離等于點(diǎn)C到平面BED的距離,過C做,則即為所求距離.因?yàn)榈酌孢呴L為2,高為,所以,,,所以利用等積法得,選D.

           

          查看答案和解析>>


          同步練習(xí)冊答案