日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [解析](1)由成等差數(shù)列.得. -2分 查看更多

           

          題目列表(包括答案和解析)

          已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

          (1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;

          (2)求數(shù)列的前n項(xiàng)和

          (3)證明:不等式  對任意的,都成立.

          【解析】第一問中,由于所以

          兩式作差,然后得到

          從而得到結(jié)論

          第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。

          第三問中,

                 

          結(jié)合放縮法得到。

          解:(1)∵     ∴

                ∴

                ∴   ∴  ………2分

                又∵正項(xiàng)數(shù)列,∴           ∴ 

          又n=1時,

             ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                                       …………………4分

                             …………………5分 

          (2)       …………………6分

              ∴

                                    …………………9分

          (3)

                …………………12分

                  

             ∴不等式  對任意的,都成立.

           

          查看答案和解析>>

          中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

          (Ⅰ)求角的大;

          (Ⅱ)若,求的值.

          【解析】第一問中利用依題意,故

          第二問中,由題意又由余弦定理知

          ,得到,所以,從而得到結(jié)論。

          (1)依題意,故……………………6分

          (2)由題意又由余弦定理知

          …………………………9分

             故

                     代入

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項(xiàng)公式;

          (2)若不等式對任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即,

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價(jià)于,

          當(dāng)時,;當(dāng)時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證 

          只要證  ,只要證  ,

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項(xiàng)公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>


          同步練習(xí)冊答案