日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)設(shè)所求雙曲線為:.其左焦點為F,左準(zhǔn)線:.- 查看更多

           

          題目列表(包括答案和解析)

          (1)若橢圓的方程是:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設(shè)△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
          對該問題某同學(xué)給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
          精英家教網(wǎng)
          這些模糊地方劃了線,請你將它補充完整.
          解:延長F2Q 交F1P的延長線于E,據(jù)題意,
          E與F2關(guān)于l對稱,所以|PE|=|PF2|.
          所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
           
          ,
          在△EF1F2中,顯然OQ是平行于EF1的中位線,
          所以|OQ|=
          1
          2
          |EF1|=
           
          ,
          注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
           
          ,
          其方程是:
           

          (2)如圖2,雙曲線的方程是:
          x2
          a2
          -
          y2
          b2
          =1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

          查看答案和解析>>

          已知橢圓C1的方程為
          x2
          4
          +y2=1
          ,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點.
          (1)求雙曲線C2的方程;
          (2)若直線l:y=kx+
          2
          與雙曲線C2恒有兩個不同的交點A和B,且
          OA
          OB
          >2
          (其中O為原點),求k的范圍.
          (3)試根據(jù)軌跡C2和直線l,設(shè)計一個與x軸上某點有關(guān)的三角形形狀問題,并予以解答(本題將根據(jù)所設(shè)計的問題思維層次評分).

          查看答案和解析>>


          同步練習(xí)冊答案