日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.已知函數(shù)f(x)=sin(2-)+2sin2(-) (R)的最小正周期 ; 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)

          已知函數(shù)f(x)=x-ax+(a-1),。

          (1)討論函數(shù)的單調(diào)性;        

          (2)證明:若,則對(duì)任意x,x,xx,有。

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)f (x)的定義域?yàn)镽,對(duì)任意的x,x都滿足f (x+x)=f (x)+f (x),當(dāng)x>0時(shí),f (x)>0.(1)試判斷f (x)的奇偶性.(2)試判斷f (x)的單調(diào)性,并證明.(3)若f (cos2θ-3)+f (4m-2mcosθ)>0對(duì)所有的θ∈[0,]恒成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)f (x) = a() + b

          (1)當(dāng)a = 1時(shí),求f (x)的單調(diào)遞減區(qū)間;(2)當(dāng)a<0時(shí),f (x)在[0,]上的值域是[2,3],求a,b的值.

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)f(x)=x4-4x3+ax2-1在區(qū)間[0,1]上單調(diào)遞增,在區(qū)間[1,2]上單調(diào)遞減.

          (1)求a的值;

          (2)記g(x)=bx2-1,若方程f(x)=g(x)的解集恰有3個(gè)元素,求b的取值范圍.

          查看答案和解析>>

          (本小題滿分12分)

          已知函數(shù)f(x)=x2ax+b (a,b∈R)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),且,數(shù)列{}的前n項(xiàng)和=f(n)(n∈N*).

          (Ⅰ) 求數(shù)列{}的通項(xiàng)公式;(Ⅱ)若數(shù)列{}滿足+ = ,求數(shù)列{}的前n項(xiàng)和.

          查看答案和解析>>

          一、選擇題:

          1C2C   3B   4A   5 C  6C.  7D   8C   9.

            1. 20080522

               

              二、填空題:

              13.13   14.   15.       16.②③

              三、解答題:

               17.解:(1) f()=sin(2-)+1-cos2(-)

                        = 2[sin2(-)- cos2(-)]+1

                       =2sin[2(-)-]+1

                       = 2sin(2x-) +1  …………………………………………5分

              ∴ T==π…………………………………………7分

                (2)當(dāng)f(x)取最大值時(shí), sin(2x-)=1,有  2x- =2kπ+ ……………10分

              =kπ+    (kZ) …………………………………………11分

              ∴所求的集合為{x∈R|x= kπ+ ,  (kZ)}.…………………………12分

               

              18.解:(1) :當(dāng)時(shí),,…………………………………………1分

              當(dāng)時(shí),.

              ……………………………………………………………………………………3分

              是等差數(shù)列,

              ??????????…………………………………………5?分

               (2)解:, .…………………………………………7分

              ,, ……………………………………8分

              ??????????…………………………………………??9分

              .

              ,,即是等比數(shù)列. ………………………11分

              所以數(shù)列的前項(xiàng)和.………………………12分

              19.解(1)∵函數(shù)的圖象的對(duì)稱軸為

              要使在區(qū)間上為增函數(shù),

              當(dāng)且僅當(dāng)>0且……………………2分

              =1則=-1,

              =2則=-1,1

              =3則=-1,1,;………………4分

              ∴事件包含基本事件的個(gè)數(shù)是1+2+2=5

              ∴所求事件的概率為………………6分

              (2)由(1)知當(dāng)且僅當(dāng)>0時(shí),

              函數(shù)上為增函數(shù),

              依條件可知試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?sub>

              構(gòu)成所求事件的區(qū)域?yàn)槿切尾糠。……………?分

              ………………10分

              ∴所求事件的概率為………………12分

              20解:(1):作,連

              的中點(diǎn),連、,

              則有……………………………4分

              …………………………6分

              (2)設(shè)為所求的點(diǎn),作,連.則………7分

              就是與面所成的角,則.……8分

              設(shè),易得

              ……………………………………10分

              解得………11分

              故線段上存在點(diǎn),且時(shí),與面角. …………12分

               

              21.解(1)由

                  

              過(guò)點(diǎn)(2,)的直線方程為,即

                 (2)由

              在其定義域(0,+)上單調(diào)遞增。

              只需恒成立

              ①由上恒成立

              ,∴,∴,∴…………………………10分

              綜上k的取值范圍為………………12分

              22.解:(1)由題意橢圓的離心率

              ∴橢圓方程為………………3分

              又點(diǎn)(1,)在橢圓上,∴=1

              ∴橢圓的方程為………………6分

                 (2)若直線斜率不存在,顯然不合題意;

              則直線l的斜率存在!7分

              設(shè)直線,直線l和橢交于,。

              依題意:………………………………9分

              由韋達(dá)定理可知:………………10分

              從而………………13分

              求得符合

              故所求直線MN的方程為:………………14分

               

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>