日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求角的大小, 查看更多

           

          題目列表(包括答案和解析)

          某小區(qū)規(guī)劃一塊周長(zhǎng)為2a(a為正常數(shù))的矩形停車場(chǎng),其中如圖所示的直角三角形ADP內(nèi)為綠化區(qū)域.且∠PAC=∠CAB.設(shè)矩形的長(zhǎng)AB=x,AB>AD
          (1)求線段DP的長(zhǎng)關(guān)于x的函數(shù)l(x)表達(dá)式并指出定義域;
          (2)應(yīng)如何規(guī)劃矩形的長(zhǎng)AB,使得綠化面積最大?

          查看答案和解析>>

          (本小題12分)設(shè)函數(shù).

          (1)求函數(shù)的最大值和最小正周期;

          設(shè)A,B,C為的三個(gè)內(nèi)角,若且C為銳角,求.

          查看答案和解析>>

          (意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個(gè)投鏢靶 該靶為正方形板.邊長(zhǎng)為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會(huì)贏得一種意大利餡餅中的一個(gè),投鏢靶中畫有三個(gè)同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時(shí).可得到一個(gè)大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時(shí),可得到一個(gè)中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時(shí),可得到一個(gè)小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個(gè)顧客都能投鏢中靶,并假設(shè)每個(gè)圓的周邊線沒有寬度,即每個(gè)投鏢不會(huì)擊中線上,試求一顧客將嬴得:

          (a)一張大餡餅,

          (b)一張中餡餅,

          (c)一張小餡餅,

          (d)沒得到餡餅的概率

          查看答案和解析>>

          (本小題滿分12分)

          有一塊邊長(zhǎng)為6m的正方形鋼板,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為x的小正方形,然后焊接成一個(gè)無蓋的蓄水池。

          (Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;

          (Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;

          (Ⅲ)蓄水池的底邊為多少時(shí),蓄水池的容積最大?最大容積是多少?

          查看答案和解析>>


          (本小題滿分12分) 已知向量,,.
          (1)若求向量的夾角;
          (2)當(dāng)時(shí),求函數(shù)的最大值。

          查看答案和解析>>

          一、選擇題(每小題5分,共40分)

          1.D    2.B    3.B    4.B    5.C     6.D    7.C     8.A

          解:5.C  ,相切時(shí)的斜率為

          6.D 

          7.C  

                 

          8.A  原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,

          顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,

          即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0

          二、填空題(每小題5分,共30分)

          9.

          10.  位執(zhí)“一般”對(duì)應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.

          11.-192

          12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個(gè)球(n個(gè)白球,k個(gè)黑球中取出m個(gè)球,可分為:沒有黑球,一個(gè)黑球,……,k個(gè)黑球等類,故有種取法.

          13.5;    14、

          15.16; 由可化為xy =8+x+y,  x,y均為正實(shí)數(shù)

           xy =8+x+y

          (當(dāng)且僅當(dāng)x=y等號(hào)成立)即xy-2-8可解得,

          即xy16故xy的最小值為16.

          三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟)。

          16、(本題滿分12分)

          解:Ⅰ)在中,

          cosA=,又A是的內(nèi)角,∴A=                  …………6分

          (Ⅱ)由正弦定理,又,故  …………8分

          即:  故是以為直角的直角三角形     …………10分

          又∵A=, ∴B=                                                …………12分

          17.(本題滿分14分)

          解:(I)所求x的可能取值為6、7、8、9                         …………1分

                     

          …………7分  

          (II)

                   ∴線路通過信息量的數(shù)學(xué)期望

                    EX        ……13分

          答:(I)線路信息暢通的概率是. (II)線路通過信息量的數(shù)學(xué)期望是……14分

          18.(本題滿分14分)

          解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系,   ……1分

            1. 、、、

              、,

              從而  ……3分

              設(shè)的夾角為,則

               ……6分

               ∴所成角的余弦值為    ……7分

              (Ⅱ)由于點(diǎn)在側(cè)面內(nèi),故可設(shè)點(diǎn)坐標(biāo)為,

               則,                         ……9分

              可得,

               

               ∴                             ……13分

              ∴在側(cè)面內(nèi)所求點(diǎn)的坐標(biāo)為   ………14分

              (其它解法參照給分)

              19.(本小題滿分14分)

              解:(1)由已知得 化簡(jiǎn)得         …………2分

                  即有唯一解

                   所以△ 即    ……5分

              消去,

              解得                          ……7分

                 (2)

                                       ……9分

                                            ……10分

              上為單調(diào)函數(shù),則上恒有成立!12分

              的圖象是開口向下的拋物線,所以△=122+24(-2-2m)≤0,

              解得   即所求的范圍是[2,+            ……14分

              20.(本小題滿分14分)

              解:(1)由已知,    公差  ……1分

                                     ……2分

                              …………4分

              由已知           ……5分  所以公比

                           ………7分

               (2)設(shè)

                                               ………8分

              所以當(dāng)時(shí),是增函數(shù)。                           ………10分

              ,所以當(dāng)時(shí),                   ………12分

              ,                              ………13分

              所以不存在,使。                           ………14分

              21.(14分)解:(1)設(shè)C(x,y),∵M(jìn)點(diǎn)是ΔABC的重心,∴M(,).

              又||=||且向量共線,∴N在邊AB的中垂線上,∴N(0,).

              而||=||,∴=,   即x2 =a2. ……6分

              (2)設(shè)E(x1,y1),F(xiàn)(x2,y2),由題意知直線L斜率存在,可設(shè)L方程為y=kx+a,…7分

              代入x2 =a2得 (3-k2)x2-2akx-4a2=0

              ∴Δ=4a2k2+16a2(3-k2)>0,即k2<4.∴k2-3<1,

              >4或<0.                     ……9分

              而x1,x2是方程的兩根,∴x1+x2=,x1x2=.            ……10分

              ?=(x1,y1-a)?(x2,y2-a)= x1x2+kx1?kx2=(1+k2) x1x2=

              =4a2(1+)∈(-∞,4a2)∪(20a2,+∞).

              ?的取值范圍為(-∞,4a2)∪(20a2,+∞).               ……14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>