日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21. 查看更多

           

          題目列表(包括答案和解析)

          ( 本題滿分12分 )
          已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
          (I)求f(x)的最小正周期;
          (II)若x∈[0,
          π2
          ]
          ,求f(x)的最大值,最小值.

          查看答案和解析>>

          (本題滿分12分)     已知函數(shù).

          (Ⅰ) 求f 1(x);

          (Ⅱ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;

          (Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項(xiàng)和Tn

          查看答案和解析>>

          (本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點(diǎn)到切線的距離為,若x=時(shí),y=f(x)有極值.

          (1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

          (2)求y=f(x)在[-3,1]上的最大值和最小值.

          查看答案和解析>>

          (本題滿分12分) 已知數(shù)列{an}滿足

             (Ⅰ)求數(shù)列的前三項(xiàng):a1,a2,a3;

             (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

          (Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn.

          查看答案和解析>>

          (本題滿分12分)   已知函數(shù)

             (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

             (Ⅱ)當(dāng)的取值范圍。

          查看答案和解析>>

          1.C  2.D 3.A  4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B

          13.2  14. 15.16.①③④

          17.

          18.解:

          .

          ⑵在上單調(diào)遞增,在上單調(diào)遞減.

          所以,當(dāng)時(shí),;當(dāng)時(shí),.

          的值域?yàn)?sub>.

          19.解:⑴直線①,

          過原點(diǎn)垂直于的直線方程為

          解①②得,

          ∵橢圓中心O(0,0)關(guān)于直線的對(duì)稱點(diǎn)在橢圓C的右準(zhǔn)線上,

          , …………………(分)

          ∵直線過橢圓焦點(diǎn),∴該焦點(diǎn)坐標(biāo)為(2,0),

          ,

          故橢圓C的方程為  ③…………………12分)

          20.點(diǎn)評(píng):本小題考查二次函數(shù)、等差數(shù)列、數(shù)列求和、不等式等基礎(chǔ)知識(shí)和基本的運(yùn)算技能,考查分析問題的能力和推理能力。

          解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

          a=3 ,  b=-2, 所以  f(x)=3x2-2x.

          又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.

          當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-

          =6n-5.

          當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

          (Ⅱ)由(Ⅰ)

          得知

          故Tn

          (1-

          因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

          21.(1)   

                  

             

           (2)由

              令得,增區(qū)間為

          減區(qū)間為

             

          2

           

          +

          0

          0

          +

           

              由表可知:當(dāng)時(shí),

             

                  解得:

              的取值范圍為

          22.(1)

             (2)

           

           


          同步練習(xí)冊(cè)答案