日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          ( 本題滿分12分 )
          已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
          (I)求f(x)的最小正周期;
          (II)若x∈[0,
          π2
          ]
          ,求f(x)的最大值,最小值.

          查看答案和解析>>

          (本題滿分12分)     已知函數(shù).

          (Ⅰ) 求f 1(x);

          (Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an

          (Ⅲ)  設(shè)bn=(32n-8),求數(shù)列{bn}的前項和Tn

          查看答案和解析>>

          (本題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線不過第四象限且斜率為3,又坐標(biāo)原點到切線的距離為,若x=時,y=f(x)有極值.

          (1)求a、b、c的值;w.w.w.k.s.5.u.c.o.m    

          (2)求y=f(x)在[-3,1]上的最大值和最小值.

          查看答案和解析>>

          (本題滿分12分) 已知數(shù)列{an}滿足

             (Ⅰ)求數(shù)列的前三項:a1,a2,a3;

             (Ⅱ)求證:數(shù)列{}為等差數(shù)列. w.w.w.k.s.5.u.c.o.m    

          (Ⅲ)求數(shù)列{an}的前n項和Sn.

          查看答案和解析>>

          (本題滿分12分)   已知函數(shù)

             (Ⅰ)當(dāng)的 單調(diào)區(qū)間;

             (Ⅱ)當(dāng)的取值范圍。

          查看答案和解析>>

          1.C  2.D  3.A  4.A  5.C  6.D  7.D  8.A 9.C10.D   11.B12.D

          13.

          14.

          15.

          16.  

          17

          18.解:

           ⑴ .

          ⑵ 函數(shù)上單調(diào)遞增,

          上單調(diào)遞減.

          所以,當(dāng)時,;當(dāng)時,.

          的值域為.

          19.解:由題意可知圓的方程為,于是.

          時,設(shè),,則由得,

          ,. 所以的中點坐標(biāo)為.

          又由,且,可知直線與直線垂直,即直線的斜率為.

          此時直線的方程為,即.

          時,同理可得直線的方程為.

          故直線的方程為.

          20. 解:(Ⅰ)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則 f`(x)=2ax+b,由于f`(x)=6x-2,得

          a=3 ,  b=-2, 所以  f(x)=3x2-2x.

          又因為點均在函數(shù)的圖像上,所以=3n2-2n.

          當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)-

          =6n-5.

          當(dāng)n=1時,a1=S1=3×12-2=6×1-5,所以,an=6n-5 (

          (Ⅱ)由(Ⅰ)

          得知,

          故Tn

          (1-

          因此,要使(1-)<)成立的m,必須且僅須滿足,即m≥10,所以滿足要求的最小正整數(shù)m為10.

          21.解:⑴設(shè),∵不等式的解集為

          ……… ①       ……… ②

          又∵有兩等根,

          ……… ③     由①②③解得   …………(5分)

          又∵,

          ,故.

            …………………………(7分)

          ⑵由①②得,

          ……………………(9分)

          無極值,∴方程

                

          解得  …………(12分)

          22.(1);

             (2)

             (3)

           

           

           


          同步練習(xí)冊答案