日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 15. 從某校參加2008年全國高中數(shù)學(xué)聯(lián)賽預(yù)賽的450名同學(xué)中.隨機(jī)抽取若干名同學(xué).將他們的成績制成頻率分布表.下面給出了此表中部分?jǐn)?shù)據(jù).(1)根據(jù)表中已知數(shù)據(jù).你認(rèn)為在①.②.③處的數(shù)值分別為 ▲ . ▲ . ▲ .(2)補(bǔ)全在區(qū)間 [70.140] 上的頻率分布直方圖,(3)若成績不低于110分的同學(xué)能參加決賽.那么可以估計該校大約有多少學(xué)生能參加決賽? 分組頻數(shù)頻率[70.80) 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          從某學(xué)校高三年級共800名男生中隨機(jī)抽取50名測量身高,測量發(fā)現(xiàn)被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組、第二組;…第八組,右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

           

          (1)估計這所學(xué)校高三年級全體男生身高180cm以上(含180cm)的人數(shù);

          (2)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖;

           (3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,求滿足的事件概率.

           

          查看答案和解析>>

          (本小題滿分14分)

          從某學(xué)校高一年級名學(xué)生中隨機(jī)抽取名測量身高,據(jù)測量被抽取的學(xué)生的身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組.第二組;…第八組,右圖

          是按上述分組方法得到的條形圖                       

          (1)根據(jù)已知條件填寫下面表格:

          組 別

          1

          2

          3

          4

          5

          6

          7

          8

          樣本數(shù)

           

           

           

           

           

           

           

           

          (2)估計這所學(xué)校高一年級名學(xué)生中身高在以上(含)的人數(shù);

          (3)在樣本中,若第二組有人為男生,其余為女生,第七組有人為女生,其余為男生,在第二組和第七組中各選一名同學(xué)組成實驗小組,問:實驗小組中恰為一男一女的概率是多少?

           

          查看答案和解析>>

          (本小題滿分14分)

          某校高一年級要從3名男生,,和2名女生中任選3名代表參加學(xué)校的演講比賽.學(xué)

          科網(wǎng)          (1)求男生被選中的概率;

            (2)求男生和女生至少一人被選中的概率.

           

          查看答案和解析>>

          .(本小題滿分14分)

          某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段,后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

          (1)求第四小組的頻率,并補(bǔ)全這個頻率分布直方圖;

          (2)估計這次考試的及格率(60分及以上為及格)和平均分;

          (3)用分層抽樣的方法從成績是80分以上(包括80分)的學(xué)生中抽取了6人進(jìn)行試卷分析,再從這6個人中選2人作學(xué)習(xí)經(jīng)驗介紹發(fā)言,求選出的2人中至少有1人在的概率.

           

          查看答案和解析>>

          (本小題滿分14分)

          某校從參加高一年級期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計了他們的物理成績(成績均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題

          (1)求出物理成績低于50分的學(xué)生人數(shù)

          (2)估計這次考試物理學(xué)科及格率(60分及以上為及格)

          (3)從物理成績不及格的學(xué)生中選兩人,求他們成績至少有一個不低于50分的概率.

           

           

           

           

           

           

           

           

           

           

          查看答案和解析>>

          一、填空題:(本大題共14小題,每小題5分,共70分.)

          1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(結(jié)果為,不扣分).

          二、解答題:(本大題共6小題,共90分.)

          15.(本小題滿分14分)

          解:(1)50;0.04;0.10 .    ………… 6分

                 (2)如圖.      ……………… 10分

                 (3)在隨機(jī)抽取的名同學(xué)中有

          出線,.      …………… 13分

          答:在參加的名中大概有63名同學(xué)出線.      

             ………………… 14分

          16.(本小題滿分14分)

          解:真,則有,即.                    ------------------4分

          真,則有,即.     ----------------9分

          、中有且只有一個為真命題,則、一真一假.

          ①若真、假,則,且,即;   ----------------11分

          ②若假、真,則,且,即3≤.    ----------------13分

          故所求范圍為:或3≤.                          -----------------14分

          17.(本小題滿分15分)

          解:(1)設(shè)在(1)的條件下方程有實根為事件

          數(shù)對共有對.                                   ------------------2分

          若方程有實根,則,即.                 -----------------4分

          則使方程有實根的數(shù)對對.                                                         ------------------6分

          所以方程有實根的概率.                          ------------------8分

          (2)設(shè)在(2)的條件下方程有實根為事件

          ,所以

          -------------10分

          方程有實根對應(yīng)區(qū)域為,.          --------------12分

          所以方程有實根的概率.------------------15分

           

          18.(本小題滿分15分)

          解:(1)易得

          .當(dāng)時,在直角中,,故.所以,.     ------------4分

          所以

          所以異面直線所成角余弦值為.- -----7分

          (2)設(shè)直線與平面所成的角為,平面的一個法向量為.

          則由.得可取,-------11分

          , ,------------13分

          ,,

          即直線與平面所成角的取值范圍為.         ------------------------15分

          19.(本小題滿分16分)

          解:(1)設(shè)關(guān)于l的對稱點為,則,

          解得,,即,故直線的方程為

          ,解得.                       ------------------------5分

          (2)因為,根據(jù)橢圓定義,得

          ,所以.又,所以.所以橢圓的方程為.                                        ------------------------10分

          (3)假設(shè)存在兩定點為,使得對于橢圓上任意一點(除長軸兩端點)都有為定值),即?,將代入并整理得…(*).由題意,(*)式對任意恒成立,所以,解之得

          所以有且只有兩定點,使得為定值.   ---------------16分

           

           

           

          20.(本小題滿分16分)

          解:(1).                        ------------------------2分

          因為,令;令.所以函數(shù)的增區(qū)間為,減區(qū)間為.                                           ------------------------5分

          (2)因為,設(shè),則.----------6分

          設(shè)切點為,則切線的斜率為,切線方程為,由點在切線上知,化簡得,即

          所以僅可作一條切線,方程是.              ------------------------9分

          (3).                  

          上恒成立上的最小值.--------------11分

          ①當(dāng)時,上單調(diào)遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

          ②當(dāng)時,令

          當(dāng)時,即時,函數(shù)在上遞增,的最小值為;解得.                                       ------------------------13分

          當(dāng)時,即時,函數(shù)在上遞減,的最小值為,無解;                                                -----------------------14分

          當(dāng)時,即時,函數(shù)在上遞減、在上遞增,所以的最小值為,無解.                ------------------------15分

          綜上,所求的取值范圍為.                     ------------------------16分

           

           

           

           

           


          同步練習(xí)冊答案