日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3. ▲ . 第4題圖 查看更多

           

          題目列表(包括答案和解析)

          圖的曲線表示一個(gè)騎自行車離家的距離與時(shí)間的關(guān)系.騎車者9時(shí)離開家,15時(shí)回家,根據(jù)這個(gè)曲線圖,請(qǐng)你回答下列頭問題:

          (1)最初到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

          (2)何時(shí)開始第一次休息?休息多長時(shí)間?

          (3)第一次休息時(shí),離家多遠(yuǎn)?

          (4)11∶00到12∶00他騎了多少千米?

          (5)他在9∶00~10∶00和10∶00~10∶30的平均速度分別是多少?

          (6)他在哪段時(shí)間里停止前進(jìn)并休息用午餐?

          查看答案和解析>>

          圖的曲線表示一個(gè)騎自行車離家的距離與時(shí)間的關(guān)系.騎車者9時(shí)離開家,15時(shí)回家,根據(jù)這個(gè)曲線圖,請(qǐng)你回答下列問題:

          (1)最初到達(dá)離家最遠(yuǎn)的地方是什么時(shí)間?離家多遠(yuǎn)?

          (2)何時(shí)開始第一次休息?休息多長時(shí)間?

          (3)第一次休息時(shí),離家多遠(yuǎn)?

          (4)11∶001200他騎了多少千米?

          (5)他在900100010001030的平均速度分別是多少?

          (6)他在哪段時(shí)間里停止前進(jìn)并休息用午餐?

          查看答案和解析>>

          (第三、四層次學(xué)校的學(xué)生做次題)
          已知二次函數(shù)h(x)=ax2+bx+c(c>0),其導(dǎo)函數(shù)y=h′(x)的圖象如下,且f(x)=lnx-h(x).
          (1)求a,b的值;
          (2)若函數(shù)f(x)在(
          1
          2
          ,m+
          1
          4
          )
          上是單調(diào)遞減函數(shù),求實(shí)數(shù)m的取值范圍;
          (3)若函數(shù)y=2x-lnx(x∈[1,4])的圖象總在函數(shù)y=f(x)的圖象的上方,求c的取值范圍.

          查看答案和解析>>

          如圖所示,矩形ABCD的邊長AB=6,BC=4,點(diǎn)F在DC上,DF=2.動(dòng)點(diǎn)M、N分別從點(diǎn)D、B同時(shí)出發(fā),沿射線DA、BA的方向運(yùn)動(dòng),當(dāng)?shù)诙蜯F=MN時(shí)M、N兩點(diǎn)同時(shí)停止運(yùn)動(dòng).連接FM、FN,當(dāng)F、N、M不在同一直線時(shí),可得△FMN,設(shè)動(dòng)點(diǎn)M、N的速度都是1個(gè)單位/秒,M、N運(yùn)動(dòng)的時(shí)間為t秒.試解答下列問題:
          (1)求F、M、N三點(diǎn)共線時(shí)t的值;
          (2)設(shè)△FMN的面積為S,寫出S與t的函數(shù)關(guān)系式.并求出t為何值時(shí)S的值最大.
          (3)試問t為何值時(shí),△FMN為直角三角形?

          查看答案和解析>>

          如圖是某市有關(guān)部門根據(jù)該市干部的月收入情況,作抽樣調(diào)查后畫出的樣本頻率分布直方圖,已知圖中第一組的頻數(shù)為4 000,請(qǐng)根據(jù)該圖提供的信息解答下列問題:圖中每組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在[1 000,1 500).
          (1)求樣本中月收入在[2 500,3 500)的人數(shù).
          (2)為了分析干部的收入與年齡、職業(yè)等方面的關(guān)系,必須從樣本的各組中按月收入再用分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在[1 500,2 000)的這段應(yīng)抽多少人?

          查看答案和解析>>

          一、填空題:(本大題共14小題,每小題5分,共70分.)

          1.       2.1    3.-2     4.      5. (1)(2)

          6. 4    7.甲       8.    9.9      10.

          11.-2       12.       13.2       14. 2

          二、解答題:(本大題共6小題,共90分.)

          15.(本小題滿分14分)

          解:(1)∵

                  …………………………………………5分

          (2)∵

          …………………………………………7分

                   ……………………………………9分

          或7                   ………………………………14分

          16.(本小題滿分14分)

          (1)證明:E、P分別為AC、A′C的中點(diǎn),

                  EP∥A′A,又A′A平面AA′B,EP平面AA′B

                 ∴即EP∥平面A′FB                  …………………………………………5分

          (2) 證明:∵BC⊥AC,EF⊥A′E,EF∥BC

             ∴BC⊥A′E,∴BC⊥平面A′EC

               BC平面A′BC

             ∴平面A′BC⊥平面A′EC             …………………………………………9分

          (3)證明:在△A′EC中,P為A′C的中點(diǎn),∴EP⊥A′C,

            在△A′AC中,EP∥A′A,∴A′A⊥A′C

                由(2)知:BC⊥平面A′EC   又A′A平面A′EC

                ∴BC⊥AA′

                ∴A′A⊥平面A′BC                   …………………………………………14分

           

          17.(本小題滿分15分)

          解:(1)取弦的中點(diǎn)為M,連結(jié)OM

          由平面幾何知識(shí),OM=1

                             …………………………………………3分

          解得:               ………………………………………5分

          ∵直線過F、B ,∴     …………………………………………6分

          (2)設(shè)弦的中點(diǎn)為M,連結(jié)OM

                        ……………………………………9分

          解得                       …………………………………………11分

                              …………………………………………15分

          (本題也可以利用特征三角形中的有關(guān)數(shù)據(jù)直接求得)

          18.(本小題滿分15分)

          (1)延長BD、CE交于A,則AD=,AE=2

               則S△ADE= S△BDE= S△BCE=

                ∵S△APQ=,∴

                ∴             …………………………………………7分

          (2)

                    =?

          …………………………………………12分

              當(dāng),

          ,            

          …………………………………………15分

          19.(本小題滿分16分)

          解(1)證:       由  得

          上點(diǎn)處的切線為,即

          又在上點(diǎn)處切線可計(jì)算得,即

          ∴直線都相切,且切于同一點(diǎn)()      …………………5分

          (2)

                …………………7分

             ∴上遞增

             ∴當(dāng)時(shí)……………10分

          (3)

          設(shè)上式為 ,假設(shè)取正實(shí)數(shù),則?

          當(dāng)時(shí),,遞減;

          當(dāng),,遞增. ……………………………………12分

                          

              

          ∴不存在正整數(shù),使得

                            …………………………………………16分

          20.(本小題滿分16分)

          解:(1),

          ,對(duì)一切恒成立

          的最小值,又

                                 …………………………………………4分

          (2)這5個(gè)數(shù)中成等比且公比的三數(shù)只能為

          只能是,

                …………………………8分

          ,顯然成立             ……………………………………12分

          當(dāng)時(shí),,

          使不等式成立的自然數(shù)n恰有4個(gè)的正整數(shù)p值為3

                                    ……………………………………………16分

           

           

          泰州市2008~2009學(xué)年度第二學(xué)期期初聯(lián)考

          高三數(shù)學(xué)試題參考答案

          附加題部分

          21.(選做題)(從A,B,C,D四個(gè)中選做2個(gè),每題10分,共20分.)

          A.解:(1)

          ∴AB=CD                            ……………………………………4分

          (2)由相交弦定理得

          2×1=(3+OP)(3-OP)

          ,∴               ……………………………………10分

          B.解:依題設(shè)有:     ………………………………………4分

           令,則           …………………………………………5分

                     …………………………………………7分

            ………………………………10分

          C.解:以有點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.(1),,由

          所以

          為圓的直角坐標(biāo)方程.  ……………………………………3分

          同理為圓的直角坐標(biāo)方程. ……………………………………6分

          (2)由      

          相減得過交點(diǎn)的直線的直角坐標(biāo)方程為. …………………………10分

          D.證明:(1)因?yàn)?sub>

              所以          …………………………………………4分

              (2)∵   …………………………………………6分

              同理,……………………………………8分

              三式相加即得……………………………10分

          22.(必做題)(本小題滿分10分)

          解:(1)記“恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)”為事件的, 則其概率為                …………………………………………4分

              答:恰好選到1個(gè)曾經(jīng)參加過數(shù)學(xué)研究性學(xué)習(xí)活動(dòng)的同學(xué)的概率為

          (2)隨機(jī)變量

                                  ……………………5分

                             …………………………6分

                            ………………………………7分

          ∴隨機(jī)變量的分布列為

          2

          3

          4

          P

           

                              …………………………10分

          23.(必做題)(本小題滿分10分)

          (1),,

          ,

                        ……………………………………3分

          (2)平面BDD1的一個(gè)法向量為

          設(shè)平面BFC1的法向量為

          得平面BFC1的一個(gè)法向量

          ∴所求的余弦值為                     ……………………………………6分

          (3)設(shè)

          ,由

          ,

          當(dāng)時(shí),

          當(dāng)時(shí),∴   ……………………………………10分

           

           


          同步練習(xí)冊(cè)答案