日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)為奇數(shù)時(shí)..即數(shù)列的奇數(shù)項(xiàng)成等差數(shù)列. 查看更多

           

          題目列表(包括答案和解析)

          已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

          (Ⅰ)若 ,是否存在,有?請(qǐng)說明理由;

          (Ⅱ)若(a、q為常數(shù),且aq0)對(duì)任意m存在k,有,試求a、q滿足的充要條件;

          (Ⅲ)若試確定所有的p,使數(shù)列中存在某個(gè)連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請(qǐng)證明.

          【解析】第一問中,由,整理后,可得、為整數(shù)不存在、,使等式成立。

          (2)中當(dāng)時(shí),則

          ,其中是大于等于的整數(shù)

          反之當(dāng)時(shí),其中是大于等于的整數(shù),則

          顯然,其中

          滿足的充要條件是,其中是大于等于的整數(shù)

          (3)中設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng)為奇數(shù)時(shí),

          結(jié)合二項(xiàng)式定理得到結(jié)論。

          解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

          (2)當(dāng)時(shí),則,其中是大于等于的整數(shù)反之當(dāng)時(shí),其中是大于等于的整數(shù),則

          顯然,其中

          、滿足的充要條件是,其中是大于等于的整數(shù)

          (3)設(shè)當(dāng)為偶數(shù)時(shí),式左邊為偶數(shù),右邊為奇數(shù),

          當(dāng)為偶數(shù)時(shí),式不成立。由式得,整理

          當(dāng)時(shí),符合題意。當(dāng),為奇數(shù)時(shí),

             由,得

          當(dāng)為奇數(shù)時(shí),此時(shí),一定有使上式一定成立。當(dāng)為奇數(shù)時(shí),命題都成立

           

          查看答案和解析>>

          已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

          (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和

          (2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說明理由.

          【解析】第一問利用在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足

          ,

          第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          第三問,

               若成等比數(shù)列,則

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時(shí)n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案