日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 令g(x)=x-2lnx,則 查看更多

           

          題目列表(包括答案和解析)

          對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
          (1)當a=1,b=-2求函數(shù)f(x)的不動點;
          (2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異不動點,求a的取值范圍;
          (3)在(2)的條件下,令g(x)=
          1
          x+2
          +loga 
          1+x
          1-x
          ,解關(guān)于x的不等式g[x(x-
          1
          2
          )]<
          1
          2

          查看答案和解析>>

          f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示.令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是(    )

          A.若a<0,則函數(shù)g(x)的圖象關(guān)于原點對稱

          B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實根

          C.若a≠0,b=2,則方程g(x)=0有兩個實根

          D.若a≥1,b<2,則方程g(x)=0有三個實根

          查看答案和解析>>

          記滿足下列條件的函數(shù)f(x)的集合為M,當|x1|≤1,|x2|≤1時,|f(x1)-f(x2)|≤4|x1-x2|,又令g(x)=x2+2x-1,則g(x)與M的關(guān)系是(    )

          A.g(x)M                  B.g(x)∈M

          C.g(x)M                  D.不能確定

          查看答案和解析>>

          f(x)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖像如圖所示,令g(x)=af(x)+b,則下列關(guān)于函數(shù)g(x)的敘述正確的是(    )

          A.若a<0,則函數(shù)g(x)的圖像關(guān)于原點對稱

          B.若a=-1,-2<b<0,則方程g(x)=0有大于2的實根

          C.若a≠0,b=2,則方程g(x)=0有兩個實根

          D.若a≥1,b<2,則方程g(x)=0有三個實根

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>


          同步練習冊答案