日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 又.由函數(shù)的單調(diào)性知 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結(jié)合導數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調(diào)遞減

          極小值

          單調(diào)遞增

          極大值

          單調(diào)遞減

          ,,!上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調(diào)遞增!最大值為。

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側(cè)。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時

          代入(*)式得:    即   (**)

           ,則

          上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>

           

          已知函數(shù).

          (Ⅰ)討論函數(shù)的單調(diào)性; 

          (Ⅱ)設,證明:對任意.

              1.選修4-1:幾何證明選講

              如圖,的角平分線的延長線交它的外接圓于點

          (Ⅰ)證明:∽△;

          (Ⅱ)若的面積,求的大小.

          證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.

          因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.

          故△ABE∽△ADC.

          (Ⅱ)因為△ABE∽△ADC,所以,即AB·ACAD·AE.

          SAB·ACsin∠BAC,且SAD·AE,故AB·ACsin∠BACAD·AE.

          則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.

           

          查看答案和解析>>

          (1)利用函數(shù)單調(diào)性的定義證明函數(shù)h(x)=x+
          3
          x
          在[
          3
          ,∞)
          上是增函數(shù);
          (2)我們可將問題(1)的情況推廣到以下一般性的正確結(jié)論:已知函數(shù)y=x+
          t
          x
          有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,
          t
          ]
          上是減函數(shù),在[
          t
          ,+∞)
          上是增函數(shù).
          若已知函數(shù)f(x)=
          4x2-12x-3
          2x+1
          ,x∈[0,1],利用上述性質(zhì)求出函數(shù)f(x)的單調(diào)區(qū)間;又已知函數(shù)g(x)=-x-2a,問是否存在這樣的實數(shù)a,使得對于任意的x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,若不存在,請說明理由;如存在,請求出這樣的實數(shù)a的值.

          查看答案和解析>>

          已知函數(shù)

          (1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;

          (2)比較大小,并寫出比較過程;

          (3)若,求a的值.

          【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點,所以,解得,因為,所以.

          (2)問中,對底數(shù)a進行分類討論,利用單調(diào)性求解得到。

          (3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .

          解:⑴∵函數(shù)的圖象經(jīng)過,即.        … 2分

          ,所以.             ………… 4分

          ⑵當時,;

          時,. ……………… 6分

          因為,

          時,上為增函數(shù),∵,∴.

          .當時,上為減函數(shù),

          ,∴.即.      …………………… 8分

          ⑶由知,.所以,(或).

          .∴,       … 10分

           或 ,所以, 或 .

           

          查看答案和解析>>

          函數(shù)是定義在上的奇函數(shù),且。

          (1)求實數(shù)a,b,并確定函數(shù)的解析式;

          (2)判斷在(-1,1)上的單調(diào)性,并用定義證明你的結(jié)論;

          (3)寫出的單調(diào)減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)

          【解析】本試題主要考查了函數(shù)的解析式和奇偶性和單調(diào)性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且

          解得,

          (2)中,利用單調(diào)性的定義,作差變形判定可得單調(diào)遞增函數(shù)。

          (3)中,由2知,單調(diào)減區(qū)間為,并由此得到當,x=-1時,,當x=1時,

          解:(1)是奇函數(shù),。

          ,………………2分

          ,又,

          (2)任取,且

          ,………………6分

          ,,,

          在(-1,1)上是增函數(shù)!8分

          (3)單調(diào)減區(qū)間為…………………………………………10分

          當,x=-1時,,當x=1時,。

           

          查看答案和解析>>


          同步練習冊答案