日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ①若是定義在[-1.1]上的偶函數(shù).且在[-1.0]上是增函數(shù)..則 查看更多

           

          題目列表(包括答案和解析)

          ①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則

          ②若銳角、滿足 則

          ③在中,“”是“”成立的充要條件;

          ④要得到函數(shù)的圖象,只需將的圖象向右平移個(gè)單位。

          其中是真命題的有             (填寫正確命題題號(hào))

           

          查看答案和解析>>

          ①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則
          ②若銳角、滿足 則;  
          ③在中,“”是“”成立的充要條件;
          ④要得到函數(shù)的圖象,只需將的圖象向右平移個(gè)單位。
          其中是真命題的有            (填寫正確命題題號(hào))

          查看答案和解析>>

          ①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則
          ②若銳角、滿足 則;  
          ③在中,“”是“”成立的充要條件;
          ④要得到函數(shù)的圖象,只需將的圖象向右平移個(gè)單位。
          其中是真命題的有            (填寫正確命題題號(hào))

          查看答案和解析>>

          設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí),

          (1)求的解析式;

          (2)若上為增函數(shù),求的取值范圍;

          (3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          設(shè)是定義在[-1,1]上的偶函數(shù),的圖象與的圖象關(guān)于直線對(duì)稱,且當(dāng)x∈[ 2,3 ] 時(shí),
          (1)求的解析式;
          (2)若上為增函數(shù),求的取值范圍;
          (3)是否存在正整數(shù),使的圖象的最高點(diǎn)落在直線上?若存在,求出的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          三、選擇題

          題號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          B

          D

          A

          B

          B

          D

          B

          D

          A

          B

          C

          B

          四、填空題

          13.2     14. 31    15.     16.  2.

          三、解答題

          17.17.解:(Ⅰ)

          的最小正周期

          (Ⅱ)由解得

          的單調(diào)遞增區(qū)間為。

          18.(Ⅰ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球均為紅球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為紅球”為事件.由于事件相互獨(dú)立,且

          ,,

          故取出的4個(gè)球均為紅球的概率是

          (Ⅱ)解:設(shè)“從甲盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球;從乙盒內(nèi)取出的2個(gè)紅球?yàn)楹谇颉睘槭录?sub>,“從甲盒內(nèi)取出的2個(gè)球均為黑球;從乙盒內(nèi)取出的2個(gè)球中,1個(gè)是紅球,1個(gè)是黑球”為事件.由于事件互斥,且

          故取出的4個(gè)紅球中恰有4個(gè)紅球的概率為

          19.(Ⅰ)取DC的中點(diǎn)E.

          ∵ABCD是邊長為的菱形,,∴BE⊥CD.

          平面, BE平面,∴ BE.

          ∴BE⊥平面PDC.∠BPE為求直線PB與平面PDC所成的角. 

          ∵BE=,PE=,∴==.  

          (Ⅱ)連接AC、BD交于點(diǎn)O,因?yàn)锳BCD是菱形,所以AO⊥BD.

          平面, AO平面,

          PD. ∴AO⊥平面PDB.

          作OF⊥PB于F,連接AF,則AF⊥PB.

          故∠AFO就是二面角A-PB-D的平面角.

          ∵AO=,OF=,∴=.

          20.解:(1)令得所求增區(qū)間為,。

          (2)要使當(dāng)時(shí)恒成立,只要當(dāng)時(shí) 。

          由(1)知

          當(dāng)時(shí),是增函數(shù),;

          當(dāng)時(shí),是減函數(shù),;

          當(dāng)時(shí),是增函數(shù),

          ,因此。

          21. 證明:由是關(guān)于x的方程的兩根得

          。

          ,

          是等差數(shù)列。

          (2)由(1)知

          。

          。

          符合上式, 。

          (3)

            ②

          ①―②得 。

          22. (1)∵

           

          ,∴

          ,

          在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

          是函數(shù)的極小值點(diǎn),極小值為;

          在點(diǎn)附近,當(dāng)時(shí),;當(dāng)時(shí),

          是函數(shù)的極大值點(diǎn),極大值為

          ,易知,

          是函數(shù)的極大值點(diǎn),極大值為;

          是函數(shù)的極小值點(diǎn),極小值為

          (2)若在上至少存在一點(diǎn)使得成立,

          上至少存在一解,即上至少存在一解

          由(1)知,

          當(dāng)時(shí),函數(shù)在區(qū)間上遞增,且極小值為

          ∴此時(shí)上至少存在一解; 

          當(dāng)時(shí),函數(shù)在區(qū)間上遞增,在上遞減,

          ∴要滿足條件應(yīng)有函數(shù)的極大值,即

          綜上,實(shí)數(shù)的取值范圍為

           

           


          同步練習(xí)冊(cè)答案