日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
          {-2,-1,0,1}

          查看答案和解析>>

          2、命題“存在x∈R,使得x2+2x+5=0”的否定是
          對任意x∈R,都有x2+2x+5≠0

          查看答案和解析>>

          3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
          29

          查看答案和解析>>

          5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點P,則點P的坐標為
          (2,2)

          查看答案和解析>>

           

          一、選擇題:本大題共12個小題,每小題5分,共60分.

          1-5:DBADC; 6-10:BACDC; 11-12:BC.

          二、填空題:本大題共4個小題,每小題4分,共16分.

          13.1或; 14.-4; 15.1; 16.6.

          三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

          17.解:(Ⅰ)∵

          ,????????????????????????????????????????????????????????????????????????????????????????? 3分

          .????????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)∵

          ,∴,當且僅當時。ⅲ剑ⅲ??????????? 8分

          ,∴,?????????????????????????????????????????? 10分

          ,當且僅當時取"=".

          故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

           

          18.解:(Ⅰ)設(shè)袋中有黑球n個,則每次取出的一個球是黑球的概率為,       3分

          設(shè)“連續(xù)取兩次,都是黑球”為事件A,∴,????????????????????????????? 5分

          ,∴.????????????????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)由(Ⅰ)知,每次取出一個球,取到紅球的概率是.????????????????????????????? 7分

          設(shè)“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

          ;??????????????????????????????????????????????????????????????????????????????? 8分

          .????????????????????????????????????????????????????????????????????????????????????? 10分

          ∴取到紅球恰為2次或3次的概率為

          故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.???????????????????????????????????? 12分

           

          19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點,連接BO,則BO⊥AA1.???????????????????????????????????????????????????????????????????????????????????????????????? 2分

          ∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

          ∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

          (Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點,建立如圖空間直角坐標系,則,,,,.則,,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

          設(shè)是平面ABC的一個法向量,

          ,則.設(shè)A1到平面ABC的距離為d.

          .??????????????????????????????????????????????????????????????????????????? 8分

          (Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.∴.?????????????????????????????????????????????????????????????????????? 11分

          ∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

           

          20.解:(Ⅰ)證明:時,;????????????????????????????????????????????????? 1分

          時,,所以,????????????????????????????????????????? 2分

          即數(shù)列是以2為首項,公差為2 的等差數(shù)列.????????????????????????????????????????????? 3分

          ,,?????????????????????????????????????????????????????????????????????? 4分

          時,,當時,.?????????????????????????????? 5分

          ????????????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)當時,,結(jié)論成立.??????????????????????????????????????????????? 7分

          時,????????????????????? 8分

          ????????????????????????????????????????????????????????????????????????? 10分

          .?????????????????????????????????????????????????????????????????????????????????????? 11分

          綜上所述:.?????????????????????????????????????????????????????? 12分

           

          21.解:(Ⅰ)∵,∴.比較系數(shù)得,.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 1分

          ,,?????????????????????????????????????????????????????????????????????? 2分

          (Ⅱ)由(Ⅰ)知,

          ,令,得

          x

          1

          2

          +

          0

          -

          0

          +

          0

          -

          ∴函數(shù)有極大值,,極小值.?????????????????? 4分

          ∵函數(shù)在區(qū)間上存在極值,

          ???????????????????????????????????????????? 5分

          解得

          故實數(shù).??????????????????????????????????????????????????????????????????? 6分

          (Ⅲ)函數(shù)的圖象與坐標軸無交點,有如下兩種情況:

          (?)當函數(shù)的圖象與x軸無交點時,必須有:

          ???????????????????????????????????????? 7分

          ,函數(shù)的值域為

          解得.??????????????????????????????????????????????????????????????????????? 8分

          (?)當函數(shù)的圖象與y軸無交點時,必須有:

          有意義,???????? 9分

          解得.????????????????????????????????????????? 10分

          由(?)、(?)知,p的范圍是,

          故實數(shù)p的取值范圍是.???????????????????????????????????????????????????????????????????????? 12分

          22.解:(Ⅰ)設(shè),,,

          ,,,

          .??????????????????????????????????????????????????????????????????????????????? 2分

          ,∴,∴,∴.??????????????????????????? 4分

          則N(c,0),M(0,c),所以,

          ,則,. ???????????????????????????????????????????????????????????????? 5分

          ∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 6分

          (Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 7分

          消去y得

          ∵直線l與橢圓交于兩個不同點,設(shè),

          ,

          ,,?????????????????????????????????????????????????????????????? 8分

          ,???????????????????????????????????????????????????????????????? 9分

          .????????????????????????????????????????????????????????????????????????? 10分

          .???????????????????????????????????????? 11分

          (或).

          設(shè),則,,

          ∴S關(guān)于u在區(qū)間單調(diào)遞增,又,,?????????????????????????????? 13分

          .??????????????????????????????????????????????????????????????????????????????????????????????????? 14分

           

           

           


          同步練習(xí)冊答案