日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 依題意可得.對恒成立. 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),.

          (Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

          (Ⅱ)若存在實(shí)數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.

          【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個不同的實(shí)數(shù)根來分析求解。

          第二問中,利用存在實(shí)數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

          解:(1)

          (2)不等式 ,即,即.

          轉(zhuǎn)化為存在實(shí)數(shù),使對任意的,不等式恒成立.

          即不等式上恒成立.

          即不等式上恒成立.

          設(shè),則.

          設(shè),則,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.

          在區(qū)間上是減函數(shù)。又

          故存在,使得.

          當(dāng)時,有,當(dāng)時,有.

          從而在區(qū)間上遞增,在區(qū)間上遞減.

          [來源:]

          所以當(dāng)時,恒有;當(dāng)時,恒有;

          故使命題成立的正整數(shù)m的最大值為5

           

          查看答案和解析>>

          如圖,,,…,,…是曲線上的點(diǎn),,…,,…是軸正半軸上的點(diǎn),且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當(dāng)時,可求得,命題成立;②假設(shè)當(dāng)時,命題成立,即有則當(dāng)時,由歸納假設(shè)及,

          第三問 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時,可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時,命題成立,即有,……………………1分

          則當(dāng)時,由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時,命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時,最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>


          同步練習(xí)冊答案