日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分13分)有一問題,在半小時(shí)內(nèi),甲能解決它的概率是0.5,乙能解決它的概率是,

           如果兩人都試圖獨(dú)立地在半小時(shí)內(nèi)解決它,計(jì)算:w.w.w.k.s.5.u.c.o.m      

             (1)兩人都未解決的概率;

             (2)問題得到解決的概率。

          查看答案和解析>>

          (本小題滿分13分)  已知是等比數(shù)列, ;是等差數(shù)列, , .

          (1) 求數(shù)列、的通項(xiàng)公式;

          (2) 設(shè)+…+,,其中,…試比較的大小,并證明你的結(jié)論.

          查看答案和解析>>

          (本小題滿分13分) 現(xiàn)有一批貨物由海上從A地運(yùn)往B地,已知貨船的最大航行速度為35海里/小時(shí),A地至B地之間的航行距離約為500海里,每小時(shí)的運(yùn)輸成本由燃料費(fèi)和其余費(fèi)用組成,輪船每小時(shí)的燃料費(fèi)用與輪船速度的平方成正比(比例系數(shù)為0.6),其余費(fèi)用為每小時(shí)960元.

          (1)把全程運(yùn)輸成本y(元)表示為速度x(海里/小時(shí))的函數(shù);

          (2)為了使全程運(yùn)輸成本最小,輪船應(yīng)以多大速度行駛?

          查看答案和解析>>

          (本小題滿分13分)

          如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個(gè)不同點(diǎn),且EA=ED,F(xiàn)B=FC, 是平面ABCD內(nèi)的兩點(diǎn),都與平面ABCD垂直,

          (Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m       

          (Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面

          體ABCDEF的體積。

           

          查看答案和解析>>

          (本小題滿分13分)兩個(gè)人射擊,甲射擊一次中靶概率是p1,乙射擊一次中靶概率是p2,已知 , 是方程x2-5x + 6 = 0的根,若兩人各射擊5次,甲的方差是 .(1) 求 p1、p2的值;(2) 兩人各射擊2次,中靶至少3次就算完成目的,則完成目的的概率是多少?(3) 兩人各射擊一次,中靶至少一次就算完成目的,則完成目的的概率是多少?

          查看答案和解析>>

          一.選擇題:BACAC  DADBC

          解析:

          1.,復(fù)數(shù)  對(duì)應(yīng)的點(diǎn)為,它與原點(diǎn)的距離是,故選B.

          2.,但.故選A.

          4.把直線向下平移二個(gè)單位,則點(diǎn)到直線的距離就相等了,故點(diǎn)的軌跡為拋物線,它的方程為,選A.

          5.依題意知,,,又,,,故選C.

          6.當(dāng)時(shí),等價(jià)于,當(dāng)時(shí),等價(jià)于,故選D.

          7.∵是等差數(shù)列,,,∴,

          ,故選A.

          8.由三視圖知該工作臺(tái)是棱長為80的正方體上面圍上一塊矩形和兩塊直角三角形合

          板,如右圖示,則用去的合板的面積故選D.

          9.,,故選B.

          10.由,可得: 知滿足事件A的區(qū)域的面積

          ,而滿足所有條件的區(qū)域的面積:,從而,

          得:,故選C.

          二.填空題: 11. 18;12. ;13.;14. ;15.、.

          解析:11.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號(hào)應(yīng)成等差數(shù)列,將4位學(xué)生的座位號(hào)按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號(hào)為(6+30)÷2=18,故另一位同學(xué)的座位號(hào)為18.

          12.

          13.設(shè)人經(jīng)過時(shí)間ts后到達(dá)點(diǎn)B,這時(shí)影長為AB=S,如圖由平幾的知識(shí)

          可得,=,由導(dǎo)數(shù)的意義知人影長度

          的變化速度v=(m/s)

          14.曲線為拋物線段

          借助圖形直觀易得

          15.由切割線定理得,,

          連結(jié)OC,則,,

          三.解答題:

          16.解:(1)---3分

          ∴函數(shù)的最小正周期為,值域?yàn)?sub>。--------------------------------------5分

          (2)解法1:依題意得: ---------------------------6分

             ∴

          -----------------------------------------8分

          ------------------------------------------------------------------------------13分

          解法2:依題意得: ----①-----------7分

             ∴

          ---------------------------------9分

          -----------②----------------10分

          ①+②得,∴-------------------------13分

          解法3:由,--------------------7分

          兩邊平方得,,--------------------------9分

            ∴

          --------------------------------------11分

          ,得

          .---------------------------------13分

          17.解:(1)∵是長方體  ∴側(cè)面底面

          ∴四棱錐的高為點(diǎn)P到平面的距離---------------------2分

          當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),四棱錐的高取得最大值,這時(shí)四棱錐體積最大----------------------------------------------------------------------------------------------------3分

          中∵,------------- 4分

          ---------------------------------------------------5分

          -----------------------------------7分

          (2)不論點(diǎn)上的任何位置,都有平面垂直于平面.-------8分

          證明如下:由題意知,,

              平面

          平面   平面平面.------------------- 13分

          18.解:(1)設(shè)“兩個(gè)編號(hào)和為8”為事件A,則事件A包含的基本事件為(2,6),(3,5),(4,4),(5,3),(6,2)共5個(gè),又甲、乙兩人取出的數(shù)字共有6×6=36(個(gè))等可能的結(jié)果,

          -----------------------------------------------------------------6分

          (2)這種游戲規(guī)則是公平的。----------------------------------------------------------------------------7分

          設(shè)甲勝為事件B,乙勝為事件C,則甲勝即兩編號(hào)和為偶數(shù)所包含的基本事件數(shù)有18個(gè):(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)

          所以甲勝的概率,乙勝的概率---------------------------11分

          所以這種游戲規(guī)則是公平的。---------------------------------------------------------------------------------12分

          19.解:(1)由橢圓的方程知,∴點(diǎn),

          設(shè)的坐標(biāo)為

          ∵FC是的直徑,∴

            ∴ -------------------------2分

          ,-------------------------------------------------3分

          解得 -----------------------------------------------------------------------5分

          橢圓的離心率---------------------------------6分

          (2)∵過點(diǎn)F,B,C三點(diǎn),∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------①-----------------------------------7分

          ∵BC的中點(diǎn)為

          ∴BC的垂直平分線方程為-----②---------------------9分

          由①②得,即--------------------11分

          ∵P在直線上,∴

            ∴--------------------------------------------------13分

          ∴橢圓的方程為------------------------------------------------------------------14分

          20.解:(1)當(dāng)時(shí),由,

          ;()------------------------------------------------------2分

          當(dāng)時(shí),由.得--------------------------------------4分

          ---------------------------5分

          (2)當(dāng)時(shí),由<0,解得,---------------------------6分

          當(dāng)時(shí),------------------------------8分

          ∴函數(shù)的單調(diào)減區(qū)間為(-1,0)和(0,1)-----------------------------------------------9分

          (3)對(duì),都有,也就是對(duì)恒成立,-------------------------------------------11分

          由(2)知當(dāng)時(shí),

          ∴函數(shù)都單調(diào)遞增-----------------------------------------------12分

          ,

          當(dāng)時(shí),∴當(dāng)時(shí),

          同理可得,當(dāng)時(shí),有,

          綜上所述得,對(duì), 取得最大值2;

          ∴實(shí)數(shù)的取值范圍為.----------------------------------------------------------------14分

          21.解:(1)由

          --------------------------------------2分

          ,∴不合舍去-------------------------------------------3分

          方法1:由

          ∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列----------------------5分

          〔方法2:由

          當(dāng)時(shí)

          ∴數(shù)列是首項(xiàng)為

          同步練習(xí)冊答案