日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. C. {或} D. {} 查看更多

           

          題目列表(包括答案和解析)

          .袋中裝有4個(gè)大小相同、標(biāo)號(hào)分別為1,2,3,4的小球,依次從袋中取出所有的球,則“標(biāo)號(hào)順序不符合從小到大或從大到小排列”的概率為

          A、          B、            C、            D、

           

          查看答案和解析>>

          .可導(dǎo)函數(shù)在閉區(qū)間的最大值必在( )取得

          A)極值點(diǎn) (B)導(dǎo)數(shù)為0的點(diǎn)

          C)極值點(diǎn)或區(qū)間端點(diǎn) (D)區(qū)間端點(diǎn)

           

          查看答案和解析>>

          .已知全集U=R,集合M={x|x2-2x≤0},則CUM=


          1. A.
            {x|0≤x≤2}
          2. B.
            {x|-2≤x≤0)
          3. C.
            {x|x≤0,或x≥2}
          4. D.
            {x|x<0,或x>2)

          查看答案和解析>>

          集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
          (1)當(dāng)k=
          1
          2
          時(shí),判斷函數(shù)f(x)=
          x
          是否屬于集合C∩D?并說(shuō)明理由.若是,則求出區(qū)間[a,b];
          (2)當(dāng)k=
          1
          2
          0時(shí),若函數(shù)f(x)=
          x
          +t∈C∩D,求實(shí)數(shù)t的取值范圍;
          (3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說(shuō)明理由.

          查看答案和解析>>

          集合C={f(x)|f(x)是在其定義域上的單調(diào)增函數(shù)或單調(diào)減函數(shù)},集合D={f(x)|f(x)在定義域內(nèi)存在區(qū)間[a,b],使得f(x)在a,b上的值域是[ka,kb],k為常數(shù)}.
          (1)當(dāng)k=
          1
          2
          時(shí),判斷函數(shù)f(x)=
          x
          是否屬于集合C∩D?并說(shuō)明理由.若是,則求出區(qū)間[a,b];
          (2)當(dāng)k=
          1
          2
          0時(shí),若函數(shù)f(x)=
          x
          +t∈C∩D,求實(shí)數(shù)t的取值范圍;
          (3)當(dāng)k=1時(shí),是否存在實(shí)數(shù)m,當(dāng)a+b≤2時(shí),使函數(shù)f(x)=x2-2x+m∈D,若存在,求出m的范圍,若不存在,說(shuō)明理由.

          查看答案和解析>>

           

          一、選擇題:(本大題共10個(gè)小題;每小題5分,共50分。)

          題 號(hào)

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答 案

          C

          B

          D

          C

          A

          B

          C

          B

          D

          B

          二、填空題:(本大題共5小題,每小題5分,共25分。)

          11. 6ec8aac122bd4f6e     12. 6ec8aac122bd4f6e   13.6ec8aac122bd4f6e    14. 6ec8aac122bd4f6e     15. [-1,1]    6ec8aac122bd4f6e

          三、解答題:(本大題共6小題,共75分。)

          16.解:(I)∵uv,∴即6ec8aac122bd4f6e------(2分)

              又6ec8aac122bd4f6e6ec8aac122bd4f6e---------(5分)

            (II)由(I)知6ec8aac122bd4f6e------------------------(7分)

              6ec8aac122bd4f6e    6ec8aac122bd4f6e------------------------------------------------(10分)

              又6ec8aac122bd4f6e

              ∴當(dāng)A6ec8aac122bd4f6e=0,即A= 6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e的最大值為6ec8aac122bd4f6e--------------(12分)

          17. 解:(Ⅰ)設(shè)A表示甲命中目標(biāo),B表示乙命中目標(biāo),則A、B相互獨(dú)立,且P(A)=6ec8aac122bd4f6e,從而甲命中但乙未命中目標(biāo)的概率為

          6ec8aac122bd4f6e   ------------------------(5分)

          (Ⅱ)設(shè)A1表示甲在兩次射擊中恰好命中k次,B1表示乙有兩次射擊中恰好命中l(wèi)次。依題意有

          6ec8aac122bd4f6e

          由獨(dú)立性知兩人命中次數(shù)相等的概率為

          6ec8aac122bd4f6e   

          18. 解法一:(1)分別延長(zhǎng)AC,A1D交于G. 過(guò)C作CM⊥A1G 于M,連結(jié)BM

          ∵BC⊥平面ACC­1A1   ∴CM為BM在平面A1C1CA的內(nèi)射影

          ∴BM⊥A1G    ∴∠CMB為二面角B―A1D―A的平面角----------------------(3分)

            平面A1C1CA中,C1C=CA=2,D為C1C的中點(diǎn)

          ∴CG=2,DC=1 在直角三角形CDG中,

           6ec8aac122bd4f6e  6ec8aac122bd4f6e

          即二面角B―A1D―A的大小為6ec8aac122bd4f6e------------------------(6分)

          (2)在線段AC上存在一點(diǎn)F,使得EF⊥平面A1BD其位置為AC中點(diǎn),證明如下:

          ∵A1B1C1―ABC為直三棱柱 , ∴B1C1//BC

          ∵由(1)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA

          ∵EF在平面A1C1CA內(nèi)的射影為C1F ,F(xiàn)為AC中點(diǎn) ∴C1F⊥A1D   ∴EF⊥A1D -----(9分)

          同理可證EF⊥BD,         ∴EF⊥平面A1BD------------------------(11分)

          ∵E為定點(diǎn),平面A1BD為定平面,點(diǎn)F唯一------------------------(12分)

          解法二:(1)∵A1B1C1―ABC為直三棱住   C1C=CB=CA=2 , AC⊥CB  D、E分別為C1C、B1C1的中點(diǎn), 建立如圖所示的坐標(biāo)系得

          C(0,0,0) B(2,0,0)  A(0,2,0)

          C1(0,0,2)  B1(2,0,2)  A­1(0,2,2)

          D(0,0,1)  E(1,0,2)               ------------------------(2分)

          6ec8aac122bd4f6e  設(shè)平面A1BD的法向量為6ec8aac122bd4f6e

          6ec8aac122bd4f6e 6ec8aac122bd4f6e

          平面ACC1A1­的法向量為6ec8aac122bd4f6e=(1,0,0)  ------------------------(4分)

          6ec8aac122bd4f6e

          即二面角B―A1D―A的大小為6ec8aac122bd4f6e  ------------------------(6分)

          (2)在線段AC上存在一點(diǎn)F,設(shè)F(0,y,0)使得EF⊥平面A1BD

          欲使EF⊥平面A1BD    由(2)知,當(dāng)且僅當(dāng)6ec8aac122bd4f6e//6ec8aac122bd4f6e---------------(9分)

          6ec8aac122bd4f6e 6ec8aac122bd4f6e 

          ∴存在唯一一點(diǎn)F(0,1,0)滿足條件. 即點(diǎn)F為AC中點(diǎn)------------(12分)

          19.解:(1)6ec8aac122bd4f6e,    -----------------(2分)

          因?yàn)楹瘮?shù)6ec8aac122bd4f6e6ec8aac122bd4f6e處的切線斜率為-3,

          所以6ec8aac122bd4f6e,即6ec8aac122bd4f6e,------------------------(3分)

          6ec8aac122bd4f6e6ec8aac122bd4f6e。------------------------(4分)

          函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí)有極值,所以6ec8aac122bd4f6e,-------(5分)

          解得6ec8aac122bd4f6e,------------------------------------------(7分)

          所以6ec8aac122bd4f6e.------------------------------------(8分)

          (2)因?yàn)楹瘮?shù)6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上單調(diào)遞增,所以導(dǎo)函數(shù)6ec8aac122bd4f6e在區(qū)間6ec8aac122bd4f6e上的值恒大于或等于零,------------------------------------(10分)

          6ec8aac122bd4f6e6ec8aac122bd4f6e,

          所以實(shí)數(shù)6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e.----------------------------------(13分)

          20.解: (1)由6ec8aac122bd4f6e知,數(shù)列{6ec8aac122bd4f6e}為等差數(shù)列,設(shè)其公差為d,則d=6ec8aac122bd4f6e,

          6ec8aac122bd4f6e.------------------------(4分)

          (2)由6ec8aac122bd4f6e≥0,解得n≤5.故

          當(dāng)n≤5時(shí),6ec8aac122bd4f6e=|6ec8aac122bd4f6e|+|6ec8aac122bd4f6e|+…+|6ec8aac122bd4f6e|=6ec8aac122bd4f6e+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e=6ec8aac122bd4f6e;---------------(6分)

          當(dāng)n>5時(shí),6ec8aac122bd4f6e=|6ec8aac122bd4f6e|+|6ec8aac122bd4f6e|+…+|6ec8aac122bd4f6e|=6ec8aac122bd4f6e+6ec8aac122bd4f6e+…+6ec8aac122bd4f6e-…-6ec8aac122bd4f6e=6ec8aac122bd4f6e.--(8分)

          (3)由于6ec8aac122bd4f6e=6ec8aac122bd4f6e,

          所以6ec8aac122bd4f6e,------(10分)

          從而6ec8aac122bd4f6e>0. ----------------------(11分)

          故數(shù)列6ec8aac122bd4f6e是單調(diào)遞增的數(shù)列,又因6ec8aac122bd4f6e是數(shù)列中的最小項(xiàng),要使6ec8aac122bd4f6e恒成立,則只需6ec8aac122bd4f6e成立即可,由此解得m<8,由于mZ,

          故適合條件的m的最大值為7. ------------------------(13分)

          21. 解:(Ⅰ)設(shè)雙曲線方程為6ec8aac122bd4f6e6ec8aac122bd4f6e,6ec8aac122bd4f6e),

          6ec8aac122bd4f6e,

          6ec8aac122bd4f6e,∴6ec8aac122bd4f6e.------------------------(2分)

          6ec8aac122bd4f6e在雙曲線上,∴6ec8aac122bd4f6e

          聯(lián)立①②③,解得6ec8aac122bd4f6e6ec8aac122bd4f6e.∴雙曲線方程為6ec8aac122bd4f6e.--------(5分)

          注:對(duì)點(diǎn)M用第二定義,得6ec8aac122bd4f6e,可簡(jiǎn)化計(jì)算.

          (Ⅱ)6ec8aac122bd4f6e,設(shè)6ec8aac122bd4f6e6ec8aac122bd4f6e,m:6ec8aac122bd4f6e,則

          6ec8aac122bd4f6e,得6ec8aac122bd4f6e,6ec8aac122bd4f6e.--------------------(7分)

          6ec8aac122bd4f6e,得6ec8aac122bd4f6e

          6ec8aac122bd4f6e,6ec8aac122bd4f6e6ec8aac122bd4f6e

          6ec8aac122bd4f6e,6ec8aac122bd4f6e,6ec8aac122bd4f6e,---------------------(9分)

          消去6ec8aac122bd4f6e,6ec8aac122bd4f6e,

          6ec8aac122bd4f6e.------------------------(10分)

          6ec8aac122bd4f6e,函數(shù)6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,

          6ec8aac122bd4f6e,∴6ec8aac122bd4f6e.------------------------(11分)

          6ec8aac122bd4f6e

           

           


          同步練習(xí)冊(cè)答案