日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 答案:①③,(3)例如:“對(duì)同一高度進(jìn)行多次測(cè)量取平均值 . “選取受力后相對(duì)伸長(zhǎng)盡量小的繩子 等等. 查看更多

           

          題目列表(包括答案和解析)

          第七部分 熱學(xué)

          熱學(xué)知識(shí)在奧賽中的要求不以深度見長(zhǎng),但知識(shí)點(diǎn)卻非常地多(考綱中羅列的知識(shí)點(diǎn)幾乎和整個(gè)力學(xué)——前五部分——的知識(shí)點(diǎn)數(shù)目相等)。而且,由于高考要求對(duì)熱學(xué)的要求逐年降低(本屆尤其低得“離譜”,連理想氣體狀態(tài)方程都沒有了),這就客觀上給奧賽培訓(xùn)增加了負(fù)擔(dān)。因此,本部分只能采新授課的培訓(xùn)模式,將知識(shí)點(diǎn)和例題講解及時(shí)地結(jié)合,爭(zhēng)取讓學(xué)員學(xué)一點(diǎn),就領(lǐng)會(huì)一點(diǎn)、鞏固一點(diǎn),然后再層疊式地往前推進(jìn)。

          一、分子動(dòng)理論

          1、物質(zhì)是由大量分子組成的(注意分子體積和分子所占據(jù)空間的區(qū)別)

          對(duì)于分子(單原子分子)間距的計(jì)算,氣體和液體可直接用,對(duì)固體,則與分子的空間排列(晶體的點(diǎn)陣)有關(guān)。

          【例題1】如圖6-1所示,食鹽(NaCl)的晶體是由鈉離子(圖中的白色圓點(diǎn)表示)和氯離子(圖中的黑色圓點(diǎn)表示)組成的,離子鍵兩兩垂直且鍵長(zhǎng)相等。已知食鹽的摩爾質(zhì)量為58.5×10-3kg/mol,密度為2.2×103kg/m3,阿伏加德羅常數(shù)為6.0×1023mol-1,求食鹽晶體中兩個(gè)距離最近的鈉離子中心之間的距離。

          【解說(shuō)】題意所求即圖中任意一個(gè)小立方塊的變長(zhǎng)(設(shè)為a)的倍,所以求a成為本題的焦點(diǎn)。

          由于一摩爾的氯化鈉含有NA個(gè)氯化鈉分子,事實(shí)上也含有2NA個(gè)鈉離子(或氯離子),所以每個(gè)鈉離子占據(jù)空間為 v = 

          而由圖不難看出,一個(gè)離子占據(jù)的空間就是小立方體的體積a3 ,

          即 a3 =  = ,最后,鄰近鈉離子之間的距離l = a

          【答案】3.97×10-10m 。

          〖思考〗本題還有沒有其它思路?

          〖答案〗每個(gè)離子都被八個(gè)小立方體均分,故一個(gè)小立方體含有×8個(gè)離子 = 分子,所以…(此法普遍適用于空間點(diǎn)陣比較復(fù)雜的晶體結(jié)構(gòu)。)

          2、物質(zhì)內(nèi)的分子永不停息地作無(wú)規(guī)則運(yùn)動(dòng)

          固體分子在平衡位置附近做微小振動(dòng)(振幅數(shù)量級(jí)為0.1),少數(shù)可以脫離平衡位置運(yùn)動(dòng)。液體分子的運(yùn)動(dòng)則可以用“長(zhǎng)時(shí)間的定居(振動(dòng))和短時(shí)間的遷移”來(lái)概括,這是由于液體分子間距較固體大的結(jié)果。氣體分子基本“居無(wú)定所”,不停地遷移(常溫下,速率數(shù)量級(jí)為102m/s)。

          無(wú)論是振動(dòng)還是遷移,都具備兩個(gè)特點(diǎn):a、偶然無(wú)序(雜亂無(wú)章)和統(tǒng)計(jì)有序(分子數(shù)比率和速率對(duì)應(yīng)一定的規(guī)律——如麥克斯韋速率分布函數(shù),如圖6-2所示);b、劇烈程度和溫度相關(guān)。

          氣體分子的三種速率。最可幾速率vP :f(v) = (其中ΔN表示v到v +Δv內(nèi)分子數(shù),N表示分子總數(shù))極大時(shí)的速率,vP == ;平均速率:所有分子速率的算術(shù)平均值, ==;方均根速率:與分子平均動(dòng)能密切相關(guān)的一個(gè)速率,==〔其中R為普適氣體恒量,R = 8.31J/(mol.K)。k為玻耳茲曼常量,k =  = 1.38×10-23J/K 〕

          【例題2】證明理想氣體的壓強(qiáng)P = n,其中n為分子數(shù)密度,為氣體分子平均動(dòng)能。

          【證明】氣體的壓強(qiáng)即單位面積容器壁所承受的分子的撞擊力,這里可以設(shè)理想氣體被封閉在一個(gè)邊長(zhǎng)為a的立方體容器中,如圖6-3所示。

          考查yoz平面的一個(gè)容器壁,P =            ①

          設(shè)想在Δt時(shí)間內(nèi),有Nx個(gè)分子(設(shè)質(zhì)量為m)沿x方向以恒定的速率vx碰撞該容器壁,且碰后原速率彈回,則根據(jù)動(dòng)量定理,容器壁承受的壓力

           F ==                            ②

          在氣體的實(shí)際狀況中,如何尋求Nx和vx呢?

          考查某一個(gè)分子的運(yùn)動(dòng),設(shè)它的速度為v ,它沿x、y、z三個(gè)方向分解后,滿足

          v2 =  +  + 

          分子運(yùn)動(dòng)雖然是雜亂無(wú)章的,但仍具有“偶然無(wú)序和統(tǒng)計(jì)有序”的規(guī)律,即

           =  +  +  = 3                    ③

          這就解決了vx的問題。另外,從速度的分解不難理解,每一個(gè)分子都有機(jī)會(huì)均等的碰撞3個(gè)容器壁的可能。設(shè)Δt = ,則

           Nx = ·3N = na3                         ④

          注意,這里的是指有6個(gè)容器壁需要碰撞,而它們被碰的幾率是均等的。

          結(jié)合①②③④式不難證明題設(shè)結(jié)論。

          〖思考〗此題有沒有更簡(jiǎn)便的處理方法?

          〖答案〗有!懊睢彼蟹肿右韵嗤乃俾蕍沿+x、?x、+y、?y、+z、?z這6個(gè)方向運(yùn)動(dòng)(這樣造成的宏觀效果和“雜亂無(wú)章”地運(yùn)動(dòng)時(shí)是一樣的),則 Nx =N = na3 ;而且vx = v

          所以,P =  = ==nm = n

          3、分子間存在相互作用力(注意分子斥力和氣體分子碰撞作用力的區(qū)別),而且引力和斥力同時(shí)存在,宏觀上感受到的是其合效果。

          分子力是保守力,分子間距改變時(shí),分子力做的功可以用分子勢(shì)能的變化表示,分子勢(shì)能EP隨分子間距的變化關(guān)系如圖6-4所示。

          分子勢(shì)能和動(dòng)能的總和稱為物體的內(nèi)能。

          二、熱現(xiàn)象和基本熱力學(xué)定律

          1、平衡態(tài)、狀態(tài)參量

          a、凡是與溫度有關(guān)的現(xiàn)象均稱為熱現(xiàn)象,熱學(xué)是研究熱現(xiàn)象的科學(xué)。熱學(xué)研究的對(duì)象都是有大量分子組成的宏觀物體,通稱為熱力學(xué)系統(tǒng)(簡(jiǎn)稱系統(tǒng))。當(dāng)系統(tǒng)的宏觀性質(zhì)不再隨時(shí)間變化時(shí),這樣的狀態(tài)稱為平衡態(tài)。

          b、系統(tǒng)處于平衡態(tài)時(shí),所有宏觀量都具有確定的值,這些確定的值稱為狀態(tài)參量(描述氣體的狀態(tài)參量就是P、V和T)。

          c、熱力學(xué)第零定律(溫度存在定律):若兩個(gè)熱力學(xué)系統(tǒng)中的任何一個(gè)系統(tǒng)都和第三個(gè)熱力學(xué)系統(tǒng)處于熱平衡狀態(tài),那么,這兩個(gè)熱力學(xué)系統(tǒng)也必定處于熱平衡。這個(gè)定律反映出:處在同一熱平衡狀態(tài)的所有的熱力學(xué)系統(tǒng)都具有一個(gè)共同的宏觀特征,這一特征是由這些互為熱平衡系統(tǒng)的狀態(tài)所決定的一個(gè)數(shù)值相等的狀態(tài)函數(shù),這個(gè)狀態(tài)函數(shù)被定義為溫度。

          2、溫度

          a、溫度即物體的冷熱程度,溫度的數(shù)值表示法稱為溫標(biāo)。典型的溫標(biāo)有攝氏溫標(biāo)t、華氏溫標(biāo)F(F = t + 32)和熱力學(xué)溫標(biāo)T(T = t + 273.15)。

          b、(理想)氣體溫度的微觀解釋: = kT (i為分子的自由度 = 平動(dòng)自由度t + 轉(zhuǎn)動(dòng)自由度r + 振動(dòng)自由度s 。對(duì)單原子分子i = 3 ,“剛性”〈忽略振動(dòng),s = 0,但r = 2〉雙原子分子i = 5 。對(duì)于三個(gè)或三個(gè)以上的多原子分子,i = 6 。能量按自由度是均分的),所以說(shuō)溫度是物質(zhì)分子平均動(dòng)能的標(biāo)志。

          c、熱力學(xué)第三定律:熱力學(xué)零度不可能達(dá)到。(結(jié)合分子動(dòng)理論的觀點(diǎn)2和溫度的微觀解釋很好理解。)

          3、熱力學(xué)過程

          a、熱傳遞。熱傳遞有三種方式:傳導(dǎo)(對(duì)長(zhǎng)L、橫截面積S的柱體,Q = K

          查看答案和解析>>

          第十部分 磁場(chǎng)

          第一講 基本知識(shí)介紹

          《磁場(chǎng)》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場(chǎng)引進(jìn)定量計(jì)算;b、對(duì)帶電粒子在復(fù)合場(chǎng)中的運(yùn)動(dòng)進(jìn)行了更深入的分析。

          一、磁場(chǎng)與安培力

          1、磁場(chǎng)

          a、永磁體、電流磁場(chǎng)→磁現(xiàn)象的電本質(zhì)

          b、磁感強(qiáng)度、磁通量

          c、穩(wěn)恒電流的磁場(chǎng)

          *畢奧-薩伐爾定律(Biot-Savart law):對(duì)于電流強(qiáng)度為I 、長(zhǎng)度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。

          畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”直導(dǎo)線的結(jié)論:B = 2k ;

          *畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;

          *畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長(zhǎng)度螺線管的匝數(shù)。

          2、安培力

          a、對(duì)直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問題(θ為B與L的夾角)。

          b、彎曲導(dǎo)體的安培力

          ⑴整體合力

          折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。

          證明:參照?qǐng)D9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為

          F = 

            = BI

            = BI

          關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個(gè)灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個(gè)證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。

          證畢。

          由于連續(xù)彎曲的導(dǎo)體可以看成是無(wú)窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說(shuō)明:這個(gè)結(jié)論只適用于勻強(qiáng)磁場(chǎng)。)

          ⑵導(dǎo)體的內(nèi)張力

          彎曲導(dǎo)體在平衡或加速的情形下,均會(huì)出現(xiàn)內(nèi)張力,具體分析時(shí),可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動(dòng)力學(xué)方程求解。

          c、勻強(qiáng)磁場(chǎng)對(duì)線圈的轉(zhuǎn)矩

          如圖9-2所示,當(dāng)一個(gè)矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場(chǎng)中,且磁場(chǎng)B的方向平行線圈平面時(shí),線圈受安培力將轉(zhuǎn)動(dòng)(并自動(dòng)選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無(wú)加速度),此瞬時(shí)的力矩為

          M = BIS

          幾種情形的討論——

          ⑴增加匝數(shù)至N ,則 M = NBIS ;

          ⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);

          ⑶線圈形狀改變,結(jié)論不變(證明從略);

          *⑷磁場(chǎng)平行線圈平面相對(duì)原磁場(chǎng)方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;

          證明:當(dāng)α = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…

          ⑸磁場(chǎng)B垂直O(jiān)O′軸相對(duì)線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。

          證明:當(dāng)β = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…

          說(shuō)明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時(shí),認(rèn)為線圈的轉(zhuǎn)軸垂直磁場(chǎng)。如果沒有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時(shí)的力矩稱為力偶矩。

          二、洛侖茲力

          1、概念與規(guī)律

          a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。

          b、能量性質(zhì)

          由于總垂直確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對(duì)帶電粒子形成沖量,卻不可能做功;颍郝鍋銎澚墒箮щ娏W拥膭(dòng)量發(fā)生改變卻不能使其動(dòng)能發(fā)生改變。

          問題:安培力可以做功,為什么洛侖茲力不能做功?

          解說(shuō):應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個(gè)問題:(1)導(dǎo)體靜止時(shí),所有粒子的洛侖茲力的合力等于安培力(這個(gè)證明從略);(2)導(dǎo)體運(yùn)動(dòng)時(shí),粒子參與的是沿導(dǎo)體棒的運(yùn)動(dòng)v1和導(dǎo)體運(yùn)動(dòng)v2的合運(yùn)動(dòng),其合速度為v ,這時(shí)的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說(shuō)安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。

          很顯然,f1的合力(安培力)做正功,而f不做功(或者說(shuō)f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動(dòng)速率v1在10?5m/s數(shù)量級(jí),而v2一般都在10?2m/s數(shù)量級(jí)以上,致使f1只是f的一個(gè)極小分量。)

          ☆如果從能量的角度看這個(gè)問題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(shí)(參看圖9-6),導(dǎo)體棒必獲得動(dòng)能,這個(gè)動(dòng)能是怎么轉(zhuǎn)化來(lái)的呢?

          若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動(dòng)勢(shì)(反電動(dòng)勢(shì))。動(dòng)力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(dòng)(感應(yīng)電動(dòng)勢(shì)等于電源電動(dòng)勢(shì),回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時(shí)間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時(shí)少。所以,導(dǎo)體棒動(dòng)能的增加是以回路焦耳熱的減少為代價(jià)的。

          2、僅受洛侖茲力的帶電粒子運(yùn)動(dòng)

          a、時(shí),勻速圓周運(yùn)動(dòng),半徑r =  ,周期T = 

          b、成一般夾角θ時(shí),做等螺距螺旋運(yùn)動(dòng),半徑r =  ,螺距d = 

          這個(gè)結(jié)論的證明一般是將分解…(過程從略)。

          ☆但也有一個(gè)問題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動(dòng)情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動(dòng)?

          其實(shí),在圖9-7中,B1平行v只是一種暫時(shí)的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動(dòng)”就無(wú)法達(dá)成了。(而在分解v的處理中,這種局面是不會(huì)出現(xiàn)的。)

          3、磁聚焦

          a、結(jié)構(gòu):見圖9-8,K和G分別為陰極和控制極,A為陽(yáng)極加共軸限制膜片,螺線管提供勻強(qiáng)磁場(chǎng)。

          b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場(chǎng)的發(fā)散角極小,即速度和磁場(chǎng)的夾角θ極小,各粒子做螺旋運(yùn)動(dòng)時(shí)可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會(huì)“聚焦”在熒光屏上的P點(diǎn)。

          4、回旋加速器

          a、結(jié)構(gòu)&原理(注意加速時(shí)間應(yīng)忽略)

          b、磁場(chǎng)與交變電場(chǎng)頻率的關(guān)系

          因回旋周期T和交變電場(chǎng)周期T′必相等,故 =

          c、最大速度 vmax = = 2πRf

          5、質(zhì)譜儀

          速度選擇器&粒子圓周運(yùn)動(dòng),和高考要求相同。

          第二講 典型例題解析

          一、磁場(chǎng)與安培力的計(jì)算

          【例題1】?jī)筛鶡o(wú)限長(zhǎng)的平行直導(dǎo)線a、b相距40cm,通過電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。

          【解說(shuō)】這是一個(gè)關(guān)于畢薩定律的簡(jiǎn)單應(yīng)用。解題過程從略。

          【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。

          【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場(chǎng)中,求由于安培力而引起的線圈內(nèi)張力。

          【解說(shuō)】本題有兩種解法。

          方法一:隔離一小段弧,對(duì)應(yīng)圓心角θ ,則弧長(zhǎng)L = θR 。因?yàn)棣?u> →

          查看答案和解析>>

          第三部分 運(yùn)動(dòng)學(xué)

          第一講 基本知識(shí)介紹

          一. 基本概念

          1.  質(zhì)點(diǎn)

          2.  參照物

          3.  參照系——固連于參照物上的坐標(biāo)系(解題時(shí)要記住所選的是參照系,而不僅是一個(gè)點(diǎn))

          4.絕對(duì)運(yùn)動(dòng),相對(duì)運(yùn)動(dòng),牽連運(yùn)動(dòng):v=v+v 

          二.運(yùn)動(dòng)的描述

          1.位置:r=r(t) 

          2.位移:Δr=r(t+Δt)-r(t)

          3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對(duì)t 求導(dǎo)數(shù)

          5.以上是運(yùn)動(dòng)學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

          三階導(dǎo)數(shù)為什么不是呢?因?yàn)榕nD第二定律是F=ma,即直接和加速度相聯(lián)系。(a對(duì)t的導(dǎo)數(shù)叫“急動(dòng)度”。)

          6.由于以上三個(gè)量均為矢量,所以在運(yùn)算中用分量表示一般比較好

          三.等加速運(yùn)動(dòng)

          v(t)=v0+at           r(t)=r0+v0t+1/2 at

           一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機(jī)在哪一區(qū)域飛行之外時(shí),不會(huì)有危險(xiǎn)?(注:結(jié)論是這一區(qū)域?yàn)橐粧佄锞,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

          練習(xí)題:

          一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個(gè)方向飛去。求碎片落到地板上的半徑(認(rèn)為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

          四.剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)

          1. 我們講過的圓周運(yùn)動(dòng)是平動(dòng)而不是轉(zhuǎn)動(dòng) 

            2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

           3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

          4.  同一剛體上兩點(diǎn)的相對(duì)速度和相對(duì)加速度 

          兩點(diǎn)的相對(duì)距離不變,相對(duì)運(yùn)動(dòng)軌跡為圓弧,VA=VB+VAB,在AB連線上

          投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

          例:A,B,C三質(zhì)點(diǎn)速度分別V,VB  ,VC      

          求G的速度。

          五.課后習(xí)題:

          一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時(shí)間T木筏劃到路線上標(biāo)有符號(hào)處。河水速度恒定U用作圖法找到在2T,3T,4T時(shí)刻木筏在航線上的確切位置。

          五、處理問題的一般方法

          (1)用微元法求解相關(guān)速度問題

          例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺(tái)上有一定滑輪D,一根輕繩一端固定在C點(diǎn),再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時(shí),A沿水平面前進(jìn),求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運(yùn)動(dòng)速度。

          (vA

          (2)拋體運(yùn)動(dòng)問題的一般處理方法

          1. 平拋運(yùn)動(dòng)
          2. 斜拋運(yùn)動(dòng)
          3. 常見的處理方法

          (1)將斜上拋運(yùn)動(dòng)分解為水平方向的勻速直線運(yùn)動(dòng)和豎直方向的豎直上拋運(yùn)動(dòng)

          (2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運(yùn)動(dòng)學(xué)公式解題

          (3)將斜拋運(yùn)動(dòng)分解為沿初速度方向的斜向上的勻速直線運(yùn)動(dòng)和自由落體運(yùn)動(dòng)兩個(gè)分運(yùn)動(dòng),用矢量合成法則求解

          例2:在擲鉛球時(shí),鉛球出手時(shí)距地面的高度為h,若出手時(shí)的速度為V0,求以何角度擲球時(shí),水平射程最遠(yuǎn)?最遠(yuǎn)射程為多少?

          (α=、 x=

          第二講 運(yùn)動(dòng)的合成與分解、相對(duì)運(yùn)動(dòng)

          (一)知識(shí)點(diǎn)點(diǎn)撥

          1. 力的獨(dú)立性原理:各分力作用互不影響,單獨(dú)起作用。
          2. 運(yùn)動(dòng)的獨(dú)立性原理:分運(yùn)動(dòng)之間互不影響,彼此之間滿足自己的運(yùn)動(dòng)規(guī)律
          3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
          4. 運(yùn)動(dòng)的合成分解:矢量合成分解的規(guī)律方法適用
            1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

          參考系的轉(zhuǎn)換:動(dòng)參考系,靜參考系

          相對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于動(dòng)參考系的運(yùn)動(dòng)

          絕對(duì)運(yùn)動(dòng):動(dòng)點(diǎn)相對(duì)于靜參考系統(tǒng)(通常指固定于地面的參考系)的運(yùn)動(dòng)

          牽連運(yùn)動(dòng):動(dòng)參考系相對(duì)于靜參考系的運(yùn)動(dòng)

          (5)位移合成定理:SA對(duì)地=SA對(duì)B+SB對(duì)地

          速度合成定理:V絕對(duì)=V相對(duì)+V牽連

          加速度合成定理:a絕對(duì)=a相對(duì)+a牽連

          (二)典型例題

          (1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測(cè)得雨滴的徑跡與豎直方向成21。角,而坐在火車?yán)锍丝涂吹接甑蔚膹桔E恰好豎直方向。求解雨滴相對(duì)于地的運(yùn)動(dòng)。

          提示:矢量關(guān)系入圖

          答案:83.7m/s

          (2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動(dòng)扶梯,為什么他可以根據(jù)測(cè)得的數(shù)據(jù)來(lái)計(jì)算自動(dòng)扶梯的臺(tái)階數(shù)?

          提示:V人對(duì)梯=n1/t1

                V梯對(duì)地=n/t2

                V人對(duì)地=n/t3

          V人對(duì)地= V人對(duì)梯+ V梯對(duì)地

          答案:n=t2t3n1/(t2-t3)t1

          (3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達(dá)正對(duì)岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達(dá)正對(duì)岸的B處,求河的寬度。

          提示:120=V水*600

                  D=V船*600

           答案:200m

          (4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時(shí),不至于被沖進(jìn)瀑布中,船對(duì)水的最小速度為多少?

          提示:如圖船航行

          答案:1.58m/s

          (三)同步練習(xí)

          1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時(shí),司機(jī)都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對(duì)地面是豎直下落的)

          2、模型飛機(jī)以相對(duì)空氣v=39km/h的速度繞一個(gè)邊長(zhǎng)2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機(jī)起飛方向相同,試求:飛機(jī)繞三角形一周需多少時(shí)間?

          3.圖為從兩列蒸汽機(jī)車上冒出的兩股長(zhǎng)幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

          4、細(xì)桿AB長(zhǎng)L ,兩端分別約束在x 、 y軸上運(yùn)動(dòng),(1)試求桿上與A點(diǎn)相距aL(0< a <1)的P點(diǎn)運(yùn)動(dòng)軌跡;(2)如果vA為已知,試求P點(diǎn)的x 、 y向分速度vPx和vPy對(duì)桿方位角θ的函數(shù)。

          (四)同步練習(xí)提示與答案

          1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

          2、提示:三角形各邊的方向?yàn)轱w機(jī)合速度的方向(而非機(jī)頭的指向);

          第二段和第三段大小相同。

          參見右圖,顯然:

          v2 =  + u2 - 2vucos120°

          可解出 v = 24km/h 。

          答案:0.2hour(或12min.)。

          3、提示:方法與練習(xí)一類似。答案為:3

          4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

          (2)解法有講究:以A端為參照, 則桿上各點(diǎn)只繞A轉(zhuǎn)動(dòng)。但鑒于桿子的實(shí)際運(yùn)動(dòng)情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對(duì)A的轉(zhuǎn)動(dòng)線速度為:v轉(zhuǎn) + vAsinθ=  

          P點(diǎn)的線速度必為  = v 

          所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

          答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

          查看答案和解析>>

          第一部分  力&物體的平衡

          第一講 力的處理

          一、矢量的運(yùn)算

          1、加法

          表達(dá): +  =  

          名詞:為“和矢量”。

          法則:平行四邊形法則。如圖1所示。

          和矢量大。篶 =  ,其中α為的夾角。

          和矢量方向:、之間,和夾角β= arcsin

          2、減法

          表達(dá): =  。

          名詞:為“被減數(shù)矢量”,為“減數(shù)矢量”,為“差矢量”。

          法則:三角形法則。如圖2所示。將被減數(shù)矢量和減數(shù)矢量的起始端平移到一點(diǎn),然后連接兩時(shí)量末端,指向被減數(shù)時(shí)量的時(shí)量,即是差矢量。

          差矢量大。篴 =  ,其中θ為的夾角。

          差矢量的方向可以用正弦定理求得。

          一條直線上的矢量運(yùn)算是平行四邊形和三角形法則的特例。

          例題:已知質(zhì)點(diǎn)做勻速率圓周運(yùn)動(dòng),半徑為R ,周期為T ,求它在T內(nèi)和在T內(nèi)的平均加速度大小。

          解說(shuō):如圖3所示,A到B點(diǎn)對(duì)應(yīng)T的過程,A到C點(diǎn)對(duì)應(yīng)T的過程。這三點(diǎn)的速度矢量分別設(shè)為、

          根據(jù)加速度的定義 得:,

          由于有兩處涉及矢量減法,設(shè)兩個(gè)差矢量   ,根據(jù)三角形法則,它們?cè)趫D3中的大小、方向已繪出(的“三角形”已被拉伸成一條直線)。

          本題只關(guān)心各矢量的大小,顯然:

           =  =  =  ,且: =  , = 2

          所以: =  =  , =  =  。

          (學(xué)生活動(dòng))觀察與思考:這兩個(gè)加速度是否相等,勻速率圓周運(yùn)動(dòng)是不是勻變速運(yùn)動(dòng)?

          答:否;不是。

          3、乘法

          矢量的乘法有兩種:叉乘和點(diǎn)乘,和代數(shù)的乘法有著質(zhì)的不同。

          ⑴ 叉乘

          表達(dá):× = 

          名詞:稱“矢量的叉積”,它是一個(gè)新的矢量。

          叉積的大。篶 = absinα,其中α為的夾角。意義:的大小對(duì)應(yīng)由作成的平行四邊形的面積。

          叉積的方向:垂直確定的平面,并由右手螺旋定則確定方向,如圖4所示。

          顯然,××,但有:×= -×

          ⑵ 點(diǎn)乘

          表達(dá):· = c

          名詞:c稱“矢量的點(diǎn)積”,它不再是一個(gè)矢量,而是一個(gè)標(biāo)量。

          點(diǎn)積的大。篶 = abcosα,其中α為的夾角。

          二、共點(diǎn)力的合成

          1、平行四邊形法則與矢量表達(dá)式

          2、一般平行四邊形的合力與分力的求法

          余弦定理(或分割成RtΔ)解合力的大小

          正弦定理解方向

          三、力的分解

          1、按效果分解

          2、按需要——正交分解

          第二講 物體的平衡

          一、共點(diǎn)力平衡

          1、特征:質(zhì)心無(wú)加速度。

          2、條件:Σ = 0 ,或  = 0 , = 0

          例題:如圖5所示,長(zhǎng)為L(zhǎng) 、粗細(xì)不均勻的橫桿被兩根輕繩水平懸掛,繩子與水平方向的夾角在圖上已標(biāo)示,求橫桿的重心位置。

          解說(shuō):直接用三力共點(diǎn)的知識(shí)解題,幾何關(guān)系比較簡(jiǎn)單。

          答案:距棒的左端L/4處。

          (學(xué)生活動(dòng))思考:放在斜面上的均質(zhì)長(zhǎng)方體,按實(shí)際情況分析受力,斜面的支持力會(huì)通過長(zhǎng)方體的重心嗎?

          解:將各處的支持力歸納成一個(gè)N ,則長(zhǎng)方體受三個(gè)力(G 、f 、N)必共點(diǎn),由此推知,N不可能通過長(zhǎng)方體的重心。正確受力情形如圖6所示(通常的受力圖是將受力物體看成一個(gè)點(diǎn),這時(shí),N就過重心了)。

          答:不會(huì)。

          二、轉(zhuǎn)動(dòng)平衡

          1、特征:物體無(wú)轉(zhuǎn)動(dòng)加速度。

          2、條件:Σ= 0 ,或ΣM+ =ΣM- 

          如果物體靜止,肯定會(huì)同時(shí)滿足兩種平衡,因此用兩種思路均可解題。

          3、非共點(diǎn)力的合成

          大小和方向:遵從一條直線矢量合成法則。

          作用點(diǎn):先假定一個(gè)等效作用點(diǎn),然后讓所有的平行力對(duì)這個(gè)作用點(diǎn)的和力矩為零。

          第三講 習(xí)題課

          1、如圖7所示,在固定的、傾角為α斜面上,有一塊可以轉(zhuǎn)動(dòng)的夾板(β不定),夾板和斜面夾著一個(gè)質(zhì)量為m的光滑均質(zhì)球體,試求:β取何值時(shí),夾板對(duì)球的彈力最小。

          解說(shuō):法一,平行四邊形動(dòng)態(tài)處理。

          對(duì)球體進(jìn)行受力分析,然后對(duì)平行四邊形中的矢量G和N1進(jìn)行平移,使它們構(gòu)成一個(gè)三角形,如圖8的左圖和中圖所示。

          由于G的大小和方向均不變,而N1的方向不可變,當(dāng)β增大導(dǎo)致N2的方向改變時(shí),N2的變化和N1的方向變化如圖8的右圖所示。

          顯然,隨著β增大,N1單調(diào)減小,而N2的大小先減小后增大,當(dāng)N2垂直N1時(shí),N2取極小值,且N2min = Gsinα。

          法二,函數(shù)法。

          看圖8的中間圖,對(duì)這個(gè)三角形用正弦定理,有:

           =  ,即:N2 =  ,β在0到180°之間取值,N2的極值討論是很容易的。

          答案:當(dāng)β= 90°時(shí),甲板的彈力最小。

          2、把一個(gè)重為G的物體用一個(gè)水平推力F壓在豎直的足夠高的墻壁上,F(xiàn)隨時(shí)間t的變化規(guī)律如圖9所示,則在t = 0開始物體所受的摩擦力f的變化圖線是圖10中的哪一個(gè)?

          解說(shuō):靜力學(xué)旨在解決靜態(tài)問題和準(zhǔn)靜態(tài)過程的問題,但本題是一個(gè)例外。物體在豎直方向的運(yùn)動(dòng)先加速后減速,平衡方程不再適用。如何避開牛頓第二定律,是本題授課時(shí)的難點(diǎn)。

          靜力學(xué)的知識(shí),本題在于區(qū)分兩種摩擦的不同判據(jù)。

          水平方向合力為零,得:支持力N持續(xù)增大。

          物體在運(yùn)動(dòng)時(shí),滑動(dòng)摩擦力f = μN(yùn) ,必持續(xù)增大。但物體在靜止后靜摩擦力f′≡ G ,與N沒有關(guān)系。

          對(duì)運(yùn)動(dòng)過程加以分析,物體必有加速和減速兩個(gè)過程。據(jù)物理常識(shí),加速時(shí),f < G ,而在減速時(shí)f > G 。

          答案:B 。

          3、如圖11所示,一個(gè)重量為G的小球套在豎直放置的、半徑為R的光滑大環(huán)上,另一輕質(zhì)彈簧的勁度系數(shù)為k ,自由長(zhǎng)度為L(zhǎng)(L<2R),一端固定在大圓環(huán)的頂點(diǎn)A ,另一端與小球相連。環(huán)靜止平衡時(shí)位于大環(huán)上的B點(diǎn)。試求彈簧與豎直方向的夾角θ。

          解說(shuō):平行四邊形的三個(gè)矢量總是可以平移到一個(gè)三角形中去討論,解三角形的典型思路有三種:①分割成直角三角形(或本來(lái)就是直角三角形);②利用正、余弦定理;③利用力學(xué)矢量三角形和某空間位置三角形相似。本題旨在貫徹第三種思路。

          分析小球受力→矢量平移,如圖12所示,其中F表示彈簧彈力,N表示大環(huán)的支持力。

          (學(xué)生活動(dòng))思考:支持力N可不可以沿圖12中的反方向?(正交分解看水平方向平衡——不可以。)

          容易判斷,圖中的灰色矢量三角形和空間位置三角形ΔAOB是相似的,所以:

                                             ⑴

          由胡克定律:F = k(- R)                ⑵

          幾何關(guān)系:= 2Rcosθ                     ⑶

          解以上三式即可。

          答案:arccos 。

          (學(xué)生活動(dòng))思考:若將彈簧換成勁度系數(shù)k′較大的彈簧,其它條件不變,則彈簧彈力怎么變?環(huán)的支持力怎么變?

          答:變;不變。

          (學(xué)生活動(dòng))反饋練習(xí):光滑半球固定在水平面上,球心O的正上方有一定滑輪,一根輕繩跨過滑輪將一小球從圖13所示的A位置開始緩慢拉至B位置。試判斷:在此過程中,繩子的拉力T和球面支持力N怎樣變化?

          解:和上題完全相同。

          答:T變小,N不變。

          4、如圖14所示,一個(gè)半徑為R的非均質(zhì)圓球,其重心不在球心O點(diǎn),先將它置于水平地面上,平衡時(shí)球面上的A點(diǎn)和地面接觸;再將它置于傾角為30°的粗糙斜面上,平衡時(shí)球面上的B點(diǎn)與斜面接觸,已知A到B的圓心角也為30°。試求球體的重心C到球心O的距離。

          解說(shuō):練習(xí)三力共點(diǎn)的應(yīng)用。

          根據(jù)在平面上的平衡,可知重心C在OA連線上。根據(jù)在斜面上的平衡,支持力、重力和靜摩擦力共點(diǎn),可以畫出重心的具體位置。幾何計(jì)算比較簡(jiǎn)單。

          答案:R 。

          (學(xué)生活動(dòng))反饋練習(xí):靜摩擦足夠,將長(zhǎng)為a 、厚為b的磚塊碼在傾角為θ的斜面上,最多能碼多少塊?

          解:三力共點(diǎn)知識(shí)應(yīng)用。

          答: 。

          4、兩根等長(zhǎng)的細(xì)線,一端拴在同一懸點(diǎn)O上,另一端各系一個(gè)小球,兩球的質(zhì)量分別為m1和m2 ,已知兩球間存在大小相等、方向相反的斥力而使兩線張開一定角度,分別為45和30°,如圖15所示。則m1 : m2??為多少?

          解說(shuō):本題考查正弦定理、或力矩平衡解靜力學(xué)問題。

          對(duì)兩球進(jìn)行受力分析,并進(jìn)行矢量平移,如圖16所示。

          首先注意,圖16中的灰色三角形是等腰三角形,兩底角相等,設(shè)為α。

          而且,兩球相互作用的斥力方向相反,大小相等,可用同一字母表示,設(shè)為F 。

          對(duì)左邊的矢量三角形用正弦定理,有:

           =          ①

          同理,對(duì)右邊的矢量三角形,有: =                                ②

          解①②兩式即可。

          答案:1 : 。

          (學(xué)生活動(dòng))思考:解本題是否還有其它的方法?

          答:有——將模型看成用輕桿連成的兩小球,而將O點(diǎn)看成轉(zhuǎn)軸,兩球的重力對(duì)O的力矩必然是平衡的。這種方法更直接、簡(jiǎn)便。

          應(yīng)用:若原題中繩長(zhǎng)不等,而是l1 :l2 = 3 :2 ,其它條件不變,m1與m2的比值又將是多少?

          解:此時(shí)用共點(diǎn)力平衡更加復(fù)雜(多一個(gè)正弦定理方程),而用力矩平衡則幾乎和“思考”完全相同。

          答:2 :3 。

          5、如圖17所示,一個(gè)半徑為R的均質(zhì)金屬球上固定著一根長(zhǎng)為L(zhǎng)的輕質(zhì)細(xì)桿,細(xì)桿的左端用鉸鏈與墻壁相連,球下邊墊上一塊木板后,細(xì)桿恰好水平,而木板下面是光滑的水平面。由于金屬球和木板之間有摩擦(已知摩擦因素為μ),所以要將木板從球下面向右抽出時(shí),至少需要大小為F的水平拉力。試問:現(xiàn)要將木板繼續(xù)向左插進(jìn)一些,至少需要多大的水平推力?

          解說(shuō):這是一個(gè)典型的力矩平衡的例題。

          以球和桿為對(duì)象,研究其對(duì)轉(zhuǎn)軸O的轉(zhuǎn)動(dòng)平衡,設(shè)木板拉出時(shí)給球體的摩擦力為f ,支持力為N ,重力為G ,力矩平衡方程為:

          f R + N(R + L)= G(R + L)           

          球和板已相對(duì)滑動(dòng),故:f = μN(yùn)        ②

          解①②可得:f = 

          再看木板的平衡,F(xiàn) = f 。

          同理,木板插進(jìn)去時(shí),球體和木板之間的摩擦f′=  = F′。

          答案: 

          第四講 摩擦角及其它

          一、摩擦角

          1、全反力:接觸面給物體的摩擦力與支持力的合力稱全反力,一般用R表示,亦稱接觸反力。

          2、摩擦角:全反力與支持力的最大夾角稱摩擦角,一般用φm表示。

          此時(shí),要么物體已經(jīng)滑動(dòng),必有:φm = arctgμ(μ為動(dòng)摩擦因素),稱動(dòng)摩擦力角;要么物體達(dá)到最大運(yùn)動(dòng)趨勢(shì),必有:φms = arctgμs(μs為靜摩擦因素),稱靜摩擦角。通常處理為φm = φms 

          3、引入全反力和摩擦角的意義:使分析處理物體受力時(shí)更方便、更簡(jiǎn)捷。

          二、隔離法與整體法

          1、隔離法:當(dāng)物體對(duì)象有兩個(gè)或兩個(gè)以上時(shí),有必要各個(gè)擊破,逐個(gè)講每個(gè)個(gè)體隔離開來(lái)分析處理,稱隔離法。

          在處理各隔離方程之間的聯(lián)系時(shí),應(yīng)注意相互作用力的大小和方向關(guān)系。

          2、整體法:當(dāng)各個(gè)體均處于平衡狀態(tài)時(shí),我們可以不顧個(gè)體的差異而講多個(gè)對(duì)象看成一個(gè)整體進(jìn)行分析處理,稱整體法。

          應(yīng)用整體法時(shí)應(yīng)注意“系統(tǒng)”、“內(nèi)力”和“外力”的涵義。

          三、應(yīng)用

          1、物體放在水平面上,用與水平方向成30°的力拉物體時(shí),物體勻速前進(jìn)。若此力大小不變,改為沿水平方向拉物體,物體仍能勻速前進(jìn),求物體與水平面之間的動(dòng)摩擦因素μ。

          解說(shuō):這是一個(gè)能顯示摩擦角解題優(yōu)越性的題目?梢酝ㄟ^不同解法的比較讓學(xué)生留下深刻印象。

          法一,正交分解。(學(xué)生分析受力→列方程→得結(jié)果。)

          法二,用摩擦角解題。

          引進(jìn)全反力R ,對(duì)物體兩個(gè)平衡狀態(tài)進(jìn)行受力分析,再進(jìn)行矢量平移,得到圖18中的左圖和中間圖(注意:重力G是不變的,而全反力R的方向不變、F的大小不變),φm指摩擦角。

          再將兩圖重疊成圖18的右圖。由于灰色的三角形是一個(gè)頂角為30°的等腰三角形,其頂角的角平分線必垂直底邊……故有:φm = 15°。

          最后,μ= tgφm 。

          答案:0.268 。

          (學(xué)生活動(dòng))思考:如果F的大小是可以選擇的,那么能維持物體勻速前進(jìn)的最小F值是多少?

          解:見圖18,右圖中虛線的長(zhǎng)度即Fmin ,所以,F(xiàn)min = Gsinφm 

          答:Gsin15°(其中G為物體的重量)。

          2、如圖19所示,質(zhì)量m = 5kg的物體置于一粗糙斜面上,并用一平行斜面的、大小F = 30N的推力推物體,使物體能夠沿斜面向上勻速運(yùn)動(dòng),而斜面體始終靜止。已知斜面的質(zhì)量M = 10kg ,傾角為30°,重力加速度g = 10m/s2 ,求地面對(duì)斜面體的摩擦力大小。

          解說(shuō):

          本題旨在顯示整體法的解題的優(yōu)越性。

          法一,隔離法。簡(jiǎn)要介紹……

          法二,整體法。注意,滑塊和斜面隨有相對(duì)運(yùn)動(dòng),但從平衡的角度看,它們是完全等價(jià)的,可以看成一個(gè)整體。

          做整體的受力分析時(shí),內(nèi)力不加考慮。受力分析比較簡(jiǎn)單,列水平方向平衡方程很容易解地面摩擦力。

          答案:26.0N 。

          (學(xué)生活動(dòng))地面給斜面體的支持力是多少?

          解:略。

          答:135N 。

          應(yīng)用:如圖20所示,一上表面粗糙的斜面體上放在光滑的水平地面上,斜面的傾角為θ。另一質(zhì)量為m的滑塊恰好能沿斜面勻速下滑。若用一推力F作用在滑塊上,使之能沿斜面勻速上滑,且要求斜面體靜止不動(dòng),就必須施加一個(gè)大小為P = 4mgsinθcosθ的水平推力作用于斜面體。使?jié)M足題意的這個(gè)F的大小和方向。

          解說(shuō):這是一道難度較大的靜力學(xué)題,可以動(dòng)用一切可能的工具解題。

          法一:隔離法。

          由第一個(gè)物理情景易得,斜面于滑塊的摩擦因素μ= tgθ

          對(duì)第二個(gè)物理情景,分別隔離滑塊和斜面體分析受力,并將F沿斜面、垂直斜面分解成Fx和Fy ,滑塊與斜面之間的兩對(duì)相互作用力只用兩個(gè)字母表示(N表示正壓力和彈力,f表示摩擦力),如圖21所示。

          對(duì)滑塊,我們可以考查沿斜面方向和垂直斜面方向的平衡——

          Fx = f + mgsinθ

          Fy + mgcosθ= N

          且 f = μN(yùn) = Ntgθ

          綜合以上三式得到:

          Fx = Fytgθ+ 2mgsinθ               ①

          對(duì)斜面體,只看水平方向平衡就行了——

          P = fcosθ+ Nsinθ

          即:4mgsinθcosθ=μN(yùn)cosθ+ Nsinθ

          代入μ值,化簡(jiǎn)得:Fy = mgcosθ      ②

          ②代入①可得:Fx = 3mgsinθ

          最后由F =解F的大小,由tgα= 解F的方向(設(shè)α為F和斜面的夾角)。

          答案:大小為F = mg,方向和斜面夾角α= arctg()指向斜面內(nèi)部。

          法二:引入摩擦角和整體法觀念。

          仍然沿用“法一”中關(guān)于F的方向設(shè)置(見圖21中的α角)。

          先看整體的水平方向平衡,有:Fcos(θ- α) = P                                   ⑴

          再隔離滑塊,分析受力時(shí)引進(jìn)全反力R和摩擦角φ,由于簡(jiǎn)化后只有三個(gè)力(R、mg和F),可以將矢量平移后構(gòu)成一個(gè)三角形,如圖22所示。

          在圖22右邊的矢量三角形中,有: =      ⑵

          注意:φ= arctgμ= arctg(tgθ) = θ                                              ⑶

          解⑴⑵⑶式可得F和α的值。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案