日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. [范例2]設(shè)函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)設(shè),若對任意,,不等式 恒成立,求實數(shù)的取值范圍.

          【解析】第一問利用的定義域是     

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是

          第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

          解: (I)的定義域是     ......1分

                        ............. 2分

          由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

          故函數(shù)的單調(diào)遞增區(qū)間是(1,3);單調(diào)遞減區(qū)間是     ........4分

          (II)若對任意不等式恒成立,

          問題等價于,                   .........5分

          由(I)可知,在上,x=1是函數(shù)極小值點,這個極小值是唯一的極值點,

          故也是最小值點,所以;            ............6分

          當(dāng)b<1時,;

          當(dāng)時,

          當(dāng)b>2時,;             ............8分

          問題等價于 ........11分

          解得b<1 或 或    即,所以實數(shù)b的取值范圍是 

           

          查看答案和解析>>

          若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

          (Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

          (Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.

          【解析】第一問中,利用定義,判定由題意得,由,所以

          第二問中, 由題意得方程有兩實根

          設(shè)所以關(guān)于m的方程有兩實根,

          即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。

          解(I)由題意得,由,所以     (6分)

          (II)由題意得方程有兩實根

          設(shè)所以關(guān)于m的方程有兩實根,

          即函數(shù)與函數(shù)的圖像在上有兩個不同交點。

           

          查看答案和解析>>

          已知函數(shù)

          (1)試求的值域;

          (2)設(shè),若對, ,恒 成立,試求實數(shù)的取值范圍

          【解析】第一問利用

          第二問中若,則,即當(dāng)時,,又由(Ⅰ)知

          若對,,恒有成立,即轉(zhuǎn)化得到。

          解:(1)函數(shù)可化為,  ……5分

           (2) 若,則,即當(dāng)時,,又由(Ⅰ)知.        …………8分

          若對,恒有成立,即

          ,即的取值范圍是

           

          查看答案和解析>>

          已知函數(shù)

          (Ⅰ)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實數(shù)的取值范圍;

          (Ⅱ)若方程有唯一解,求實數(shù)的值.

          【解析】第一問,   

          當(dāng)0<x<2時,,當(dāng)x>2時,,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當(dāng)上均為增函數(shù)

          (Ⅱ)中方程有唯一解有唯一解

          設(shè)  (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個極小值,的最小值為-24-16ln2,

          當(dāng)m=-24-16ln2時,方程有唯一解得到結(jié)論。

          (Ⅰ)解: 

          當(dāng)0<x<2時,,當(dāng)x>2時,,

          要使在(a,a+1)上遞增,必須

          如使在(a,a+1)上遞增,必須,即

          由上得出,當(dāng)上均為增函數(shù)  ……………6分

          (Ⅱ)方程有唯一解有唯一解

          設(shè)  (x>0)

          隨x變化如下表

          x

          -

          +

          極小值

          由于在上,只有一個極小值,的最小值為-24-16ln2,

          當(dāng)m=-24-16ln2時,方程有唯一解

           

          查看答案和解析>>

          已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

          (1)求f(x)的解析式;

          (2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

          【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

          (2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

          然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

          解:(1)f′(x)=3ax2+2bx+c

          依題意

          又f′(0)=-3

          ∴c=-3 ∴a=1 ∴f(x)=x3-3x

          (2)設(shè)切點為(x0,x03-3x0),

          ∵f′(x)=3x2-3,∴f′(x0)=3x02-3

          ∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

          又切線過點A(2,m)

          ∴m-(x03-3x0)=(3x02-3)(2-x0)

          ∴m=-2x03+6x02-6

          令g(x)=-2x3+6x2-6

          則g′(x)=-6x2+12x=-6x(x-2)

          由g′(x)=0得x=0或x=2

          ∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

          ∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

          畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,

          所以m的取值范圍是(-6,2).

           

          查看答案和解析>>


          同步練習(xí)冊答案