日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ) 設(shè)橢圓的左頂點(diǎn)為A,下頂點(diǎn)為B.動點(diǎn)P滿足.()試求點(diǎn)P的軌跡方程.使點(diǎn)B關(guān)于該軌跡的對稱點(diǎn)落在橢圓上. 查看更多

           

          題目列表(包括答案和解析)

          精英家教網(wǎng)設(shè)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左.右焦點(diǎn)分別為F1F2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
          F1F2
          +
          F2Q
          =
          0

          (1)若過A.Q.F2三點(diǎn)的圓恰好與直線l:x-
          3
          y-3=0相切,求橢圓C的方程;
          (2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M.N兩點(diǎn).試證明:
          1
          |F2M|
          +
          1
          |F2N|
          為定值;②在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

          查看答案和解析>>

          設(shè)橢圓C1的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2y軸的交點(diǎn)為B,且經(jīng)過F1F2點(diǎn).

          (Ⅰ)求橢圓C1的方程;

          (Ⅱ)設(shè)M(0,),N為拋物線C2上的一動點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1P、Q兩點(diǎn),求△MPQ面積的最大值.

          查看答案和解析>>

          設(shè)橢圓C1的左、右焦點(diǎn)分別是F1,F(xiàn)2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2:y=x2-1與y軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).

          (Ⅰ)求橢圓C1的方程;

          (Ⅱ)設(shè),N為拋物線C2上的一動點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P,Q兩點(diǎn),求△MPQ面積的最大值.

          查看答案和解析>>

          設(shè)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2為正三角形,且以AF2為直徑的圓與直線y=
          3
          x+2
          相切.
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM、PN為鄰邊的平行四邊形是菱形?若存在,求實數(shù)m的取值范圍,若不存在,請說明理由.

          查看答案和解析>>

          精英家教網(wǎng)設(shè)橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2:y=x2-1與y軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).
          (Ⅰ)求橢圓C1的方程;
          (Ⅱ)設(shè)M(0,-
          4
          5
          ),N為拋物線C2上的一動點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求△MPQ面積的最大值.

          查看答案和解析>>

          一. 選擇題(本大題共6小題,每小題7分,共42分)

          題號

          1

          2

          3

          4

          5

          6

          答案

          C

          B

          C

          C

          A

          A

          二. 填空題(本大題共3小題,每小題5分,共15分)

          7. 0          8. 36           9.    

          三.解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟(本大題共3小題,共43分)

          10.(本小題滿分14分)

          解:(I)設(shè)等差數(shù)列的公差為,則

                                           …………2分

                  解得                                    …………4分

                        .                                                             …………5分

                                                              …………7分

             (II)由

                       

                                                                            …………10分

                                                                  …………12分

                       

                                                                                 …………14分

          11.(本小題滿分14分)

          解法1:(Ⅰ) 取CD的中點(diǎn)E,連結(jié)PE、EM、EA.

          ∵△PCD為正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

          ∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

          ∵四邊形ABCD是矩形

          ∴△ADE、△ECM、△ABM均為直角三角形

           

          由勾股定理可求得:EM=,AM=,AE=3

                                     (4分)

          ,又在平面ABCD上射影:

          ∴∠AME=90°,       ∴AM⊥PM                   (6分)

          (Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

          ∴∠PME是二面角P-AM-D的平面角            (8分)

          ∴tan ∠PME=

          ∴∠PME=45°

          ∴二面角P-AM-D為45°;                    (10分)

          (Ⅲ)設(shè)D點(diǎn)到平面PAM的距離為,連結(jié)DM,則

           ,    ∴

                                    (12分)

          中,由勾股定理可求得PM=

          ,所以:

          即點(diǎn)D到平面PAM的距離為                        (14分)

          解法2:(Ⅰ) 以D點(diǎn)為原點(diǎn),分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,

          依題意,可得

               ……2分

                (4分)

           

          ,∴AM⊥PM              (6分)

           (Ⅱ)設(shè),且平面PAM,則

             即

          ,   

           

          ,得                     (8分)

          ,顯然平面ABCD,    ∴

          結(jié)合圖形可知,二面角P-AM-D為45°;     (10分)

          (Ⅲ) 設(shè)點(diǎn)D到平面PAM的距離為,由(Ⅱ)可知與平面PAM垂直,則

          =

          即點(diǎn)D到平面PAM的距離為               (14分)

          12.(本小題滿分15分)

          解:(Ⅰ)∵軸,∴,由橢圓的定義得:    (2分)

          ,∴,                  (4分)

              ∴     

          ,                                     (6分)

          ∴所求橢圓C的方程為.                             (7分)

          (Ⅱ)由(Ⅰ)知點(diǎn)A(-2,0),點(diǎn)B為(0,-1),設(shè)點(diǎn)P的坐標(biāo)為

          ,

          -4得-

          ∴點(diǎn)P的軌跡方程為.               (9分)

          設(shè)點(diǎn)B關(guān)于P的軌跡的對稱點(diǎn)為,則由軸對稱的性質(zhì)可得:

          ,解得:,      (12分)

          ∵點(diǎn)在橢圓上,∴ ,

          整理得解得

          ∴點(diǎn)P的軌跡方程為,                   (14分)

          經(jīng)檢驗都符合題設(shè),

          ∴滿足條件的點(diǎn)P的軌跡方程為.                 (15分)

           

           

             

           

           

           

           


          同步練習(xí)冊答案