日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分14分)

          在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點R,若a,b.

             (1)用a b表示;

             (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

          查看答案和解析>>

          (本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足

          (1)求動點P的軌跡方程。

          (2)若過點A的直線L與動點P的軌跡交于M、N兩點,且

          其中Q(-1,0),求直線L的方程.

          查看答案和解析>>

          (本小題滿分14分)

           已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m          

          (Ⅰ)討論的單調(diào)性;

          (Ⅱ)設(shè)a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。

          查看答案和解析>>

          (本小題滿分14分)

          已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。

          (Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;

          (Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;

          (Ⅲ)設(shè)0<ab,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有

          aSnb?若存在,求λ的取值范圍;若不存在,說明理由。

          查看答案和解析>>

          (本小題滿分14分)

          如圖(1),是等腰直角三角形,,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).

          (Ⅰ)求證:;

          (Ⅱ)求三棱錐的體積.

          查看答案和解析>>

          一. 選擇題(本大題共6小題,每小題7分,共42分)

          題號

          1

          2

          3

          4

          5

          6

          答案

          C

          B

          C

          C

          A

          A

          二. 填空題(本大題共3小題,每小題5分,共15分)

          7. 0          8. 36           9.    

          三.解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟(本大題共3小題,共43分)

          10.(本小題滿分14分)

          解:(I)設(shè)等差數(shù)列的公差為,則

                                           …………2分

                  解得                                    …………4分

                        .                                                             …………5分

                                                              …………7分

             (II)由

                       

                                                                            …………10分

                                                                  …………12分

                       

                                                                                 …………14分

          11.(本小題滿分14分)

          解法1:(Ⅰ) 取CD的中點E,連結(jié)PE、EM、EA.

          ∵△PCD為正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

          ∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

          ∵四邊形ABCD是矩形

          ∴△ADE、△ECM、△ABM均為直角三角形

           

          由勾股定理可求得:EM=,AM=,AE=3

                                     (4分)

          ,又在平面ABCD上射影:

          ∴∠AME=90°,       ∴AM⊥PM                   (6分)

          (Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

          ∴∠PME是二面角P-AM-D的平面角            (8分)

          ∴tan ∠PME=

          ∴∠PME=45°

          ∴二面角P-AM-D為45°;                    (10分)

          (Ⅲ)設(shè)D點到平面PAM的距離為,連結(jié)DM,則

           ,    ∴

                                    (12分)

          中,由勾股定理可求得PM=

          ,所以:

          即點D到平面PAM的距離為                        (14分)

          解法2:(Ⅰ) 以D點為原點,分別以直線DA、DC為x軸、y軸,建立如圖所示的空間直角坐標(biāo)系,

          依題意,可得

               ……2分

                (4分)

           

          ,∴AM⊥PM              (6分)

           (Ⅱ)設(shè),且平面PAM,則

             即

          ,   

           

          ,得                     (8分)

          ,顯然平面ABCD,    ∴

          結(jié)合圖形可知,二面角P-AM-D為45°;     (10分)

          (Ⅲ) 設(shè)點D到平面PAM的距離為,由(Ⅱ)可知與平面PAM垂直,則

          =

          即點D到平面PAM的距離為               (14分)

          12.(本小題滿分15分)

          解:(Ⅰ)∵軸,∴,由橢圓的定義得:    (2分)

          ,∴,                  (4分)

              ∴     

          ,                                     (6分)

          ∴所求橢圓C的方程為.                             (7分)

          (Ⅱ)由(Ⅰ)知點A(-2,0),點B為(0,-1),設(shè)點P的坐標(biāo)為

          ,,

          -4得-

          ∴點P的軌跡方程為.               (9分)

          設(shè)點B關(guān)于P的軌跡的對稱點為,則由軸對稱的性質(zhì)可得:

          ,解得:,      (12分)

          ∵點在橢圓上,∴ ,

          整理得解得

          ∴點P的軌跡方程為,                   (14分)

          經(jīng)檢驗都符合題設(shè),

          ∴滿足條件的點P的軌跡方程為.                 (15分)

           

           

             

           

           

           

           


          同步練習(xí)冊答案