日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓.點為坐標原點,一條直線與圓相切并與橢圓交于不同的兩點A.B. 查看更多

           

          題目列表(包括答案和解析)

          已知圓,點,直線.

          ⑴求與圓相切,且與直線垂直的直線方程
          ⑵在直線上(為坐標原點),存在定點(不同于點),滿足:對于圓上任一點,都有為一常數(shù),試求所有滿足條件的點的坐標.

          查看答案和解析>>

          已知圓C:x2+y2+2x-4y+3=0.
          (1)若不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
          (2)從圓C外一點P(x,y)向圓引一條切線,切點為M,O為坐標原點,且有|PM|=|PO|,求點P的軌跡方程.

          查看答案和解析>>

          已知圓C:x2+y2-2x+4y-4=0,一條斜率等于1的直線L與圓C交于A,B兩點.
          (1)求弦AB最長時直線L的方程
          (2)求△ABC面積最大時直線L的方程
          (3)若坐標原點O在以AB為直徑的圓內(nèi),求直線L在y軸上的截距范圍.

          查看答案和解析>>

          已知圓O:,點O為坐標原點,一條直線與圓O相切并與橢圓交于不同的兩點A、B

             (1)設(shè),求的表達式;

             (2)若,求直線的方程;

             (3)若,求三角形OAB面積的取值范圍.

          查看答案和解析>>

          已知圓,點,直線
          ⑴求與圓相切,且與直線垂直的直線方程;
          ⑵若在直線上(為坐標原點)存在定點(不同于點),滿足:對于圓上任意一點,都有為一常數(shù),求所有滿足條件的點的坐標.

          查看答案和解析>>

          一、選擇題:1. D 2. B  3. A  4. D  5. C  6. B  7. D  8. A  9. C  10. B 

          11. A   12. B

          二、填空題:13. 5;14. 18 ;15. 2 ;16. ③④

          三、解答題:

          17. 解:(1) 由已知得,即,………………2分

          所以數(shù)列{}是以1為首項,公差2的等差數(shù)列.…………………………4分

          .………………………………………5分

          (2) 由(1)知:,從而.…………………………7分

          ………………………………9分

          ……………………12分

          18. 解:(1)……2分

          ……………………4分

          ………………………6分

          (2) ∵

          (k∈Z);…………………… 8分

          ≤x≤(k∈Z);…………………………10分

          的單調(diào)遞增區(qū)間為[] (k∈Z)……………………12分

          19. (1)解:把4名獲書法比賽一等獎的同學編號為1,2,3,4,2名獲繪畫比賽一等獎的同學編號為5,6.從6名同學中任選兩名的所有可能結(jié)果如下:(1,2),(1,3),(1,4),(1,5), (1,6),(2,3),(2,4),(2,5), (2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個.…………………4分

          (1) 從6名同學中任選兩名,都是書法比賽一等獎的所有可能是:(1,2),(1,3),(1,4), (2,3),(2,4),(3,4),共6個.…………………………6分

          ∴選出的兩名志愿者都是書法比賽一等獎的概率.…………………8分

          (2) 從6名同學中任選兩名,一名是書法比賽一等獎,另一名是繪畫比賽一等獎的所有可能是:(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8個.………………………10分

          ∴選出的兩名志愿者一名是書法比賽一等獎,另一名是繪畫比賽一等獎的概率是.………………………12分

          20. 解:(1) 取AB的中點G,連FG,可得FG∥AE,F(xiàn)G=AE,又CD⊥平面ABC,AE⊥平面ABC,∴CD∥AE,CD=AE………………………2分

          ∴FG∥CD,F(xiàn)G=CD,∵FG⊥平面ABC……………4分

          ∴四邊形CDFG是矩形,DF∥CG,CG平面ABC,

          DF平面ABC∴DF∥平面ABC…………………6分

          (2) Rt△ABE中,AE=2a,AB=2a,F(xiàn)為BE中點,∴AF⊥BE

          ∵△ABC是正三角形,∴CG⊥AB,∴DF⊥AB…………9分

          又DF⊥FG,∴DF⊥平面ABE,DF⊥AF,

          ∴AF⊥平面BDF,∴AF⊥BD.……………………12分

          21. 解:(1)與圓相切,則,即,所以,

          ………………………3分

          則由,消去y得:  (*)

          由Δ=,∴,………………4分

          (2) 設(shè),由(*)得,.…………5分

          .…………………………6分

          ,所以.∴k=±1.

          .,∴………………………7分

          .…………………8分

          (3) 由(2)知:(*)為

          由弦長公式得

           … 10分

          所以………………………12分

          22. (1) 解:設(shè)x∈(0,1],則-x∈[-1,0),∴………………1分

          是奇函數(shù).∴=………………………2分

          ∴當x∈(0,1]時, ,…………………3分

          ………………………………4分

          (2) 當x∈(0,1]時,∵…………………6分

          ,x∈(0,1],≥1,

          .………………………7分

          .……………………………8分

          在(0,1]上是單調(diào)遞增函數(shù).…………………9分

          (3) 解:當時, 在(0,1]上單調(diào)遞增. ,

          (不合題意,舍之),………………10分

          ≤-1時,由,得.……………………………11分

          如下表:

          1

          >0

          0

          <0

           

          最大值

             ㄋ

           

          由表可知: ,解出.……………………12分

          此時∈(0,1)………………………………13分

          ∴存在,使在(0,1]上有最大值-6.………………………14分

           

           

           


          同步練習冊答案