日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿(mǎn)分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).

          (1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

          查看答案和解析>>

          (本小題滿(mǎn)分12分)已知等比數(shù)列{an}中, 

             (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

             (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

             (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

          查看答案和解析>>

          (本小題滿(mǎn)分12分)已知函數(shù),其中a為常數(shù).

             (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

             (Ⅱ)求的單調(diào)區(qū)間.

          查看答案和解析>>

          (本小題滿(mǎn)分12分)

          甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

             (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

             (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

          查看答案和解析>>

          (本小題滿(mǎn)分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線(xiàn)與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

             (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

             (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

          查看答案和解析>>

           

           

          一、選擇題:

          l         題號(hào)

          l        

          l        

          l        

          l        

          l        

          l        

          l        

          l        

          l         答案

          l        

          l        

          l        

          l        

          l        

          l        

          l        

          l        

           

          1、解析:,N=

          .答案:

          2、解析:由題意得

          答案:

          3、解析:程序的運(yùn)行結(jié)果是.答案:

          4、解析:與直線(xiàn)垂直的切線(xiàn)的斜率必為4,而,所以,切點(diǎn)為.切線(xiàn)為,即,答案:

          5、解析:由一元二次方程有實(shí)根的條件,而,由幾何概率得有實(shí)根的概率為.答案:

          6、解析:如果兩條平行直線(xiàn)中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面,所以正確;如果兩個(gè)平面與同一條直線(xiàn)垂直,則這兩個(gè)平面平行,所以正確;

          如果一個(gè)平面經(jīng)過(guò)了另一個(gè)平面的一條垂線(xiàn),則這兩個(gè)平面平行,所以也正確;

          只有選項(xiàng)錯(cuò)誤.答案:

          7、解析:由題意,得,答案:

          8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉?lái)的.答案:

          二、填空題:

          l         題號(hào)

          l        

          l        

          l        

          l        

          l        

          l        

          l        

          l         答案

          l        

          l        

          l        

          l        

          l        

          l        

          l        

           

          9、解析:若,則,解得

          10、解析:由題意

          11、解析:

          12、解析:令,則,令,則,

          ,則,令,則,

          ,則,令,則,

          …,所以

          13、解析:;則圓心坐標(biāo)為

          由點(diǎn)到直線(xiàn)的距離公式得圓心到直線(xiàn)的距離為,所以要求的最短距離為

          14、解析:由柯西不等式,答案:

          15、解析:顯然為相似三角形,又,所以的面積等于9cm

           

          三、解答題:本大題共6小題,滿(mǎn)分80分.解答須寫(xiě)出文字說(shuō)明、證明過(guò)程和演算步驟.

          16、解: (1),    ……………………… 2分

           ∴,………………………………………………… 4分

           解得.………………………………………………………………… 6分

          (2)由,得:,     ……………………… 8分

              ………………………………… 10分

          .…………………………………………………………… 12分

          17、解:(1)… 2分

          的最小正周期,      …………………………………4分

          且當(dāng)時(shí)單調(diào)遞增.

          的單調(diào)遞增區(qū)間(寫(xiě)成開(kāi)區(qū)間不扣分).……6分

          (2)當(dāng)時(shí),當(dāng),即時(shí)

          所以.      …………………………9分

          的對(duì)稱(chēng)軸.      …………………12分

          18、解:

          (1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,

          記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分

          ∵“兩球恰好顏色不同”共種可能,…………………………5分

          . ……………………………………………………7分

          解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn), …………………………2分

          ∵每次摸出一球得白球的概率為.………………………………5分

          ∴“有放回摸兩次,顏色不同”的概率為. …………………7分

          (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得:

          ,

          … 10分

          ,……………………………………12分

          .……………………14分

          19、(1)證明:  連結(jié),交于點(diǎn),連結(jié).………………………1分

            是菱形, ∴的中點(diǎn). ………………………………………2分

            點(diǎn)的中點(diǎn), ∴.   …………………………………3分

            平面平面, ∴平面.  ……………… 6分

          (2)解法一:

           平面,平面,∴ .

          ,∴.  …………………………… 7分

          是菱形,  ∴.

          ,

          平面.  …………………………………………………………8分

          ,垂足為,連接,則,

          所以為二面角的平面角. ………………………………… 10分

          ,∴,.

          在Rt△中,=,…………………………… 12分

          .…………………………… 13分

          ∴二面角的正切值是. ………………………… 14分

          解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線(xiàn)段的垂直平分線(xiàn)所在直線(xiàn)為軸,所在直線(xiàn)為軸,所在直線(xiàn)為軸,建立空間直角坐標(biāo)系,令,……………2分

          ,,

          .  ……………4分

          設(shè)平面的一個(gè)法向量為,

          ,得

          ,則,∴.  …………………7分   

          平面,平面,

          .  ………………………………… 8分

          ,∴.

          是菱形,∴.

          ,∴平面.…………………………… 9分

          是平面的一個(gè)法向量,.………………… 10分

          ,

          ,  …………………… 12分 

          .…………………………………… 13分 

          ∴二面角的正切值是.  ……………………… 14分

          20、解:圓的方程為,則其直徑長(zhǎng),圓心為,設(shè)的方程為,即,代入拋物線(xiàn)方程得:,設(shè),

          ,   ………………………………2分

          .  ……………………4分

          …6分

          , ………… 7分

          因此.    ………………………………… 8分

          據(jù)等差,,  …………… 10分

          所以,,…………… 12分

          即:方程為.   …………………14分

          21、解:

          (1)因?yàn)?sub>, …………………………2分 

          所以,滿(mǎn)足條件.   …………………3分

          又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根

          所以函數(shù)是集合M中的元素. …………………………4分

          (2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根

          同步練習(xí)冊(cè)答案