日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 中的函數(shù)是否為集合M的元素, 查看更多

           

          題目列表(包括答案和解析)

          若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

          (Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

          (Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

          【解析】第一問中,利用定義,判定由題意得,由,所以

          第二問中, 由題意得方程有兩實(shí)根

          設(shè)所以關(guān)于m的方程有兩實(shí)根,

          即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。

          解(I)由題意得,由,所以     (6分)

          (II)由題意得方程有兩實(shí)根

          設(shè)所以關(guān)于m的方程有兩實(shí)根,

          即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。

           

          查看答案和解析>>

          已知函數(shù)f(x)=x2+(a-2)x-alnx,其中常數(shù)a≠0.
          (I)若x=3是函數(shù)y=f(x)極值點(diǎn),求a的值;
          (II)當(dāng)a=-2時(shí),給出兩組直線:6x+y+m=0,x-y+n=0,其中m,n為常數(shù),判斷這兩組直線中是否存在y=f(x)的切線,若存在,求出切線方程;若不存在,請(qǐng)說明理由.
          (III)是否存在正實(shí)數(shù)a,使得關(guān)于x的方程f(x)=(3a-2)x+alnx有唯一實(shí)數(shù)解?若存在,求a的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=x2+(a-2)x-alnx,其中常數(shù)a≠0.
          (I)若x=3是函數(shù)y=f(x)極值點(diǎn),求a的值;
          (II)當(dāng)a=-2時(shí),給出兩組直線:6x+y+m=0,x-y+n=0,其中m,n為常數(shù),判斷這兩組直線中是否存在y=f(x)的切線,若存在,求出切線方程;若不存在,請(qǐng)說明理由.
          (III)是否存在正實(shí)數(shù)a,使得關(guān)于x的方程f(x)=(3a-2)x+alnx有唯一實(shí)數(shù)解?若存在,求a的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          己知函數(shù)f(x)=數(shù)學(xué)公式-1(其中a是不為0的實(shí)數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
          (I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
          (II)已知s,t為正實(shí)數(shù),求證:ttex≥stet(其中e為自然對(duì)數(shù)的底數(shù));
          (III)是否存在實(shí)數(shù)m,使得函數(shù)y=f(數(shù)學(xué)公式)+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          己知函數(shù)f(x)=-1(其中a是不為0的實(shí)數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
          (I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
          (II)已知s,t為正實(shí)數(shù),求證:ttex≥stet(其中e為自然對(duì)數(shù)的底數(shù));
          (III)是否存在實(shí)數(shù)m,使得函數(shù)y=f()+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分.

          1―5CADAD   6―10BACBC   11―12BD

          二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

          13.  14.  15. 16.③④

          三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

          17.(本小題滿分12分)

                 解:(I)由題意知……………………1分

                

                 ………………………………………………………6分

                

                 ………………………………………………8分

             (II)

                 …………………………10分

                

                 最大,其最大值為3.………………12分

          18.(本小題滿分12分)

                 解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

            1.        P(0,0,a),F,,).………………2分

                 (I)

                     …………………………………………4分

              文本框:     (II)設(shè)平面DEF的法向量為

                     得

                     取x=1,則y=-2,z=1.

                     ………………………………………………6分

                    

                     設(shè)DB與平面DEF所成角為……………………………………8分

                 (III)假設(shè)存在點(diǎn)G滿足題意

                     因?yàn)?sub>

                    

                     ∴存在點(diǎn)G,其坐標(biāo)為(,0,0),即G點(diǎn)為AD的中點(diǎn).……………………12分

              19.(本小題滿分12分)

                     解:(I)ξ的所有可能取值為0,1,2,依題意得:

                     …………3分

                     ∴ξ的分布列為

                    

              ξ

              0

              1

              2

              P

                     ∴Eξ=0×+1×+2×=1.…………………………………………4分

                 (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

                     ∴所求概率為…………………………………8分

                 (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B

                     ………………………………10分

                     ……………12分

              20.(本小題滿分12分)

                     解:(I)由題意知

                     是等差數(shù)列.…………………………………………2分

                    

                     ………………………………5分

                 (II)由題設(shè)知

                    

                     是等差數(shù)列.…………………………………………………………8分

                    

                     ………………………………10分

                     ∴當(dāng)n=1時(shí),;

                     當(dāng)

                     經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

              21.(本小題滿分12分)

                     解:(I)令

                     則

                     是單調(diào)遞減函數(shù).……………………………………2分

                     又取

                     在其定義域上有唯一實(shí)根.……………………………4分

                 (II)由(I)知方程有實(shí)根(或者由,易知x=0就是方程的一個(gè)根),滿足條件①.………………………………………………5分

                    

                     滿足條件②.故是集合M中的元素.……………………………7分

                 (III)不妨設(shè)在其定義域上是增函數(shù).

                     ………………………………………………………………8分

                     是其定義域上的減函數(shù).

                     .………………10分

                    

                     …………………………………………12分

              22.(本小題滿分14分)

                     解:(I)設(shè)

                     由

                     ………………………………………………2分

                     又

                    

                     同理,由………………………………4分

                     …………6分

                 (II)方法一:當(dāng)m=0時(shí),A(2,2),B(2,-),Dn,2),En,-2).

                     ∵ABED為矩形,∴直線AE、BD的交點(diǎn)N的坐標(biāo)為(………………8分

                     當(dāng)

                    

                     同理,對(duì)、進(jìn)行類似計(jì)算也得(*)式.………………………………12分

                     即n=-2時(shí),N為定點(diǎn)(0,0).

                     反之,當(dāng)N為定點(diǎn),則由(*)式等于0,得n=-2.…………………………14分

                     方法二:首先n=-2時(shí),則D(-2,y1),A

                       ①

                       ②…………………………………………8分

                     ①-②得

                    

                     …………………………………………………………10分

                     反之,若N為定點(diǎn)N(0,0),設(shè)此時(shí)

                     則

                     由DN、B三點(diǎn)共線,   ③

                     同理EN、A三點(diǎn)共線, ④………………12分

                     ③+④得

                     即-16m+8m4m=0,m(n+2)=0.

                     故對(duì)任意的m都有n=-2.……………………………………………………14分

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>