日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. A.10海里/小時 B.10海里/小時 C.5海里/小時 D.5海里/小時 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分10分).如圖,貨輪在海上以50海里/時的速度沿方位角(從正北方向順時針轉(zhuǎn)到目標方向線的水平角)為155o的方向航行.為了確定船位,在B點處觀測到燈塔A的方位角為125o.半小時后,貨輪到達C點處,觀測到燈塔A的方位角為80o.求此時貨輪與燈塔之間的距離(答案保留最簡根號)。   

          查看答案和解析>>

          我艦在敵島A處南偏西50°的B處,發(fā)現(xiàn)敵艦正離開A島沿北偏西10°的方向以每小時10海里的速度航行,我艦要用2小時的時間追趕敵艦,設(shè)圖中的C處是我艦追上敵艦的地點,且已知AB距離為12海里.
          (1)求我艦追趕敵艦的速度;
          (2)求∠ABC的正弦值.

          查看答案和解析>>

          我艦在敵島A處南偏西50°的B處,發(fā)現(xiàn)敵艦正離開A島沿北偏西10°的方向以每小時10海里的速度航行,我艦要用2小時的時間追趕敵艦,設(shè)圖中的C處是我艦追上敵艦的地點,且已知AB距離為12海里.
          (1)求我艦追趕敵艦的速度;
          (2)求∠ABC的正弦值.

          查看答案和解析>>

          一艘海輪從A處出發(fā),以每小時40海里的速度沿東偏南50°方向直線航行,30分鐘后到達B處.在C處有一座燈塔,海輪在A處觀察燈塔,其方向是東偏南20°,在B處觀察燈塔,其方向是北偏東65°,那么B、C兩點間的距離是


          1. A.
            10數(shù)學公式海里
          2. B.
            10數(shù)學公式海里
          3. C.
            20數(shù)學公式海里
          4. D.
            20數(shù)學公式海里

          查看答案和解析>>

          一艘海輪從A處出發(fā),以每小時40海里的速度沿東偏南50°方向直線航行,30分鐘后到達B處.在C處有一座燈塔,海輪在A處觀察燈塔,其方向是東偏南20°,在B處觀察燈塔,其方向是北偏東65°,那么B、C兩點間的距離是
          [     ]
          A.10海里  
          B.10海里  
          C.20海里  
          D.20海里

          查看答案和解析>>

          一、選擇題:本大題共12小題,每小題5分,共60分.

          1―5CADAD   6―10BACBC   11―12BD

          二、填空題:本大題共4個小題,每小題4分,共16分.

          13.  14.  15. 16.③④

          三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

          17.(本小題滿分12分)

                 解:(I)由題意知……………………1分

                

                 ………………………………………………………6分

                

                 ………………………………………………8分

             (II)

                 …………………………10分

                

                 最大,其最大值為3.………………12分

          18.(本小題滿分12分)

                 解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系(如圖).

            1.        P(0,0,a),F,,).………………2分

                 (I)

                     …………………………………………4分

              文本框:     (II)設(shè)平面DEF的法向量為

                     得

                     取x=1,則y=-2,z=1.

                     ………………………………………………6分

                    

                     設(shè)DB與平面DEF所成角為……………………………………8分

                 (III)假設(shè)存在點G滿足題意

                     因為

                    

                     ∴存在點G,其坐標為(,0,0),即G點為AD的中點.……………………12分

              19.(本小題滿分12分)

                     解:(I)ξ的所有可能取值為0,1,2,依題意得:

                     …………3分

                     ∴ξ的分布列為

                    

              ξ

              0

              1

              2

              P

                     ∴Eξ=0×+1×+2×=1.…………………………………………4分

                 (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

                     ∴所求概率為…………………………………8分

                 (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

                     ………………………………10分

                     ……………12分

              20.(本小題滿分12分)

                     解:(I)由題意知

                     是等差數(shù)列.…………………………………………2分

                    

                     ………………………………5分

                 (II)由題設(shè)知

                    

                     是等差數(shù)列.…………………………………………………………8分

                    

                     ………………………………10分

                     ∴當n=1時,;

                     當

                     經(jīng)驗證n=1時也適合上式. …………………………12分

              21.(本小題滿分12分)

                     解:(I)令

                     則

                     是單調(diào)遞減函數(shù).……………………………………2分

                     又取

                     在其定義域上有唯一實根.……………………………4分

                 (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

                    

                     滿足條件②.故是集合M中的元素.……………………………7分

                 (III)不妨設(shè)在其定義域上是增函數(shù).

                     ………………………………………………………………8分

                     是其定義域上的減函數(shù).

                     .………………10分

                    

                     …………………………………………12分

              22.(本小題滿分14分)

                     解:(I)設(shè)

                     由

                     ………………………………………………2分

                     又

                    

                     同理,由………………………………4分

                     …………6分

                 (II)方法一:當m=0時,A(2,2),B(2,-),Dn,2),En,-2).

                     ∵ABED為矩形,∴直線AE、BD的交點N的坐標為(………………8分

                     當

                    

                     同理,對、進行類似計算也得(*)式.………………………………12分

                     即n=-2時,N為定點(0,0).

                     反之,當N為定點,則由(*)式等于0,得n=-2.…………………………14分

                     方法二:首先n=-2時,則D(-2,y1),A

                       ①

                       ②…………………………………………8分

                     ①-②得

                    

                     …………………………………………………………10分

                     反之,若N為定點N(0,0),設(shè)此時

                     則

                     由DN、B三點共線,   ③

                     同理E、NA三點共線, ④………………12分

                     ③+④得

                     即-16m+8m4m=0,m(n+2)=0.

                     故對任意的m都有n=-2.……………………………………………………14分

               

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>